
Design Exploration for SHA3 Algorithm in FPGAs
Florêncio Natan dos Santos Gama

Departamento de Computação, Universidade Federal
de Sergipe, São Cristóvão, Sergipe

florencionatan@gmail.com

Edward David Moreno
Departamento de Computação, Universidade Federal

de Sergipe, São Cristóvão, Sergipe

edwdavid@gmail.com

Abstract—This paper studies the performance of SHA-3
(Secure Hash Algorithm version 3) hardware
implementations. One of them focused on high-speed and the
other for low area. So, we discuss some techniques which were
chosen for their implementation and the main influences that
such techniques brought to the algorithm. We show in this
paper a study with statics of consumption area and
performance of this algorithm (Keccak from SHA-3) using
some of the most used tools in the hardware community
(Quartus and Cyclone II board from Altera).

Index Terms—SHA-3, Keccak Algorithm, FPGA,
Performance.

 1 INTRODUCTION

Cryptographic hash is a class of cryptographic functions that are
used when we are dealing with the authenticity and integrity of
data. The hash can reduce a message to a single output consisting
of a sequence of bits of fixed size, which is typically smaller than
the original message [1]. SHA-3 was contest organized by NITS
(National Institute of Standards and Technology) between 2007
and 2012 with the object of choosing the new standard
cryptographic hash to be used in the coming years [2]. The
algorithm chosen was the Keccak, one of its main advantages over
competitors was its excellent performance in hardware [3].

 2 KECCAK ALGORITHM

The Keccak algorithm was created by Guido Bertoni, Joan
Daemen, Michaël Peeters and Gilles Van Assche for participation
in the SHA-3 contest. The sponge Keccak is based on functions,
which is a generalization of the concept of cryptographic hash
function with infinite output and can perform quasi all symmetric
cryptographic functions, from hashing to pseudo-random number
generation to authenticated encryption[4]. The Keccak is an easily
configurable algorithm, an important characteristic is the variable
size of its permutation. The size of its permutation is called b,
where b {25, 50, 100, 200, 400, 800, 1600} [5]. Immediately∈

following the entry, the current data block is divided into a three-
dimensional array with 5 x 5 x w, the w is the word size and
equals b/25. After is performed a function called Round, it is an
operation performed on the data matrix N times. The number N of
times the Round runs is set by formula 12 + 2 * log2 W, with 24
the highest possible value for N, this only occurs when b is equal
to 1600 bits, in this case we can see that the word size is 64 bits.
The function Round[b](A, RC) performs five steps called θ
(theta), ρ (rho), π (pi), χ (chi) and ι(iota), [5]. The Figure 1 has
Keccak pseudocode.

In pseudocode above AND and NOT are respectively the
conjunction and negation logic boolean operation. The symbol ⊕
represents the exclusive disjunction operation in boolean algebra.
ROT(M,r) is a binary circle rotation function, which shifts the bits
of M r positions. The arrays of values r[x, y] and RC are constants
used by the function, size RC can change according the size of the
data block [5]. The A array is the current state of hash, B and C
are local temporary variables.

Round [b] (A,RC)
θ step
∀ x in0. . . 4
C [x]=A [x, 0] A⊕ [x, 1] A⊕ [x, 2] A⊕ [x,3] A⊕ [x, 4]
∀ x in0. . . 4
D [x]=C [X−1] ROT⊕ (C [X+ 1] ,1)
∀ (x,y) in (0 .. . 4,0 . .. 4)

A [x,y]=A [x,y] D⊕ [X]

ρ and π steps
∀ (x,y) in (0 .. . 4,0 . .. 4)

B [y,2 x+3 y]=ROT (A [x,y] ,r [x,y])

χ step
∀ (x,y) in (0 .. . 4,0 . .. 4)

A [x,y]=B [x,y]⊕ ((NOTB [x+1, y]) ANDB [X+ 2, y])

ι step
A [0,0]=A [0,0] RC⊕

returnA
Figure 1: Pseudocode of Keccak[5]

 3 HARDWARE IMPLEMENTATION

The creators of Keccak implement and provide three
architectures to reflect different trade-off for it's algorithm a high-
speed core, a low-area co-processor and a mid range core [5]. This
study covers the high-speed and low area in its scope, and both
are totally written in VHDL (Very High Speed Integrated Circuit
Hardware Description Language). The two versions analyzed here
are available for download on the algorithm's page.

 3.1 Main Project focused in Low area
The Keccak low area co-processor is suitable for smart cards or

wireless sensor networks where area is particularly important
since it determines the cost of the device and there is no rich
operating system allowing to run different processes in parallel
[5].

It also needs external memory, the co-processor is capable to
store only a small amount of data that is being used at the
moment. Its design consists of six source files, below is a brief
description of each:

 “fsm.vhd” - File that contains the implementation of the
state machine of the chip, responsible for determining
the order in which each operation will be performed;

 “pe.vhd” - Contains the 5 defined functions by Keccak
θ, ρ, π, χ, ι;

 “keccak_copro.vhd” - File that defines the chip Keccak
itself, it is an encapsulation of entities defined in two
files above;

 “system_mem.vhd” - Contains a simple implementation
of memory for the system where the algorithm will run;

 “keccak_globals.vhd” - Type definitions and global
variables used by all documents;

 “tb_keccak_copro.vhd” - File that contains a test bench
for Keccak the test bench works by reading data from a
file that contains a number of entries to be processed.

Now we mainly analyze the components that are defined in
“fsm.vhd” and “pe.vhd” because it is in them that is defined the
core of SHA-3.

 3.1.1 fsh.vhd

Here we can find described the state machine that controls the
work of the chip. It consists of 22 states, a state of initialization, 7
states that read data from memory and perform the first half of the
function θ, 7 states that perform the second half of the function θ
and process ρ and π, finally more 7 states that process functions χ
and ι then store the data. Also here is defined the function π.

As known by hardware community, when a state machine is
too extensive it can force the algorithm to reuse the most of the
circuits responsible for permutation in this way saving area, but
making slower processing. Another decision that also influences

this is the fact that the data is transferred by entries on the size of
the word rather than the buffer size.

 3.1.2 pe.vhd

This file defines the code permutation, it contains 4 of the 5
functions that compose the Keccak and they are θ, ρ, χ, ι. The
communication of this module with fsm is made by a gate called
command, composed of seven bits where the bit currently active
in '1' indicates which operations will be performed, we can see in
the Table 1 what the meaning of each bit. All functions are
implemented concurrently so that the command is responsible for
assigning the correct value to the output gate.

 3.2 Main Project Focused in High-speed
This version of Keccak written in VHDL, was designed to have

excellent execution performance. In the third round report of
SHA-3 competition we can see that Keccak has the better
performance than other competitors and its predecessor SHA-2
(Secure Hash Algorithm version 2), being the only one of them
considerably better than SHA-2[6]. It can be used in any
performance-critical applications. Different from the previous
model that needs additional memory, the high-speed
implementation does not need any additional storage just gets the
input block and processes it. This project contains seven source
code files. They will be listed below, as well as their functionality:

 “keccak.vhd” - Chip that encapsulates the full function
contains the following parts keccak_round,
keccak_buffer, keccak_round_constants_gen;

Table 1: Meaning of the command bits

ACTIVE BIT ACTION

0 READS DATA FROM MEMORY TO AN INTERNAL

REGISTER.

1 PERFORMS THE FIRST HALF OF θ.

2 PERFORMS THE SECOND HALF OF θ.

3 SWAP DATA FROM INTERNAL REGISTERS.

4 WRITE THE VALUE OF REGISTER 1 IN THE MEMORY.

5 RUN Ρ

6 RUN Χ

7 RUN Ι

 “keccak_buffer.vhd” - Component that stores the buffer
data for the execution of the algorithm;

 “keccak_globals.vhd” - Type definitions and global
variables used in all documents;

 “keccak_round.vhd” - Here we have implemented the 5
internal functions by the algorithm;

 “keccak_round_constants_gen.vhd” - Chip that contains
a function for generating the constants used during the
execution of ι;

 “tb_keccak_permutation.vhd” - Test bench used to
check the operation of the algorithm;

 “tb_keccak.vhd” - Another test bench that comes with
the algorithm

Now we analyze the components defined in
“keccak_buffer.vhd”, “keccak_round.vhd” and
“keccak_round_constants_gen.vhd”.

 3.2.1 keccak_buffer.vhd

This is the data buffer that feeds the algorithm in this version. It
has two modes of operation: data input, where it reads data from
the input until the buffer is complete and data output where it
transfers its data to the Keccak round.

 3.2.2 keccak_round_constants_gen.vhd

Here are generated the constants used in ι step. Its operation is
very simple, given one entry that corresponds to the round
number that is being executed, the number must be between 0 and
23, then it returns the value corresponding to the round constant.

 3.2.3 keccak_round.vhd

Here is where the co-processor algorithm is indeed. All
functions are implemented as described. In this case the output of
the current function is connected to the input of the next function,
thus ordering the execution of the algorithm. To create a series of
parallel components the designer chose to use the construction
"for - generate" so that all words were processed in parallel.

 4 SIMULATION TOOLS

This section we present the tools used to measure our results.
Two tools were used, the simulator provided by Mentor Graphics
ModelSim to assess the performance of the algorithms on the
execution time and Altera Quartus used to measure the area. The
results of area were measured considering a FPGA (Field-
Programmable Gate Array) model Cyclone II from Altera also.

 4.1 ModelSim
ModelSim is the market leading tool for the simulation of

ASIC and FPGA devices. Created by Mentor Graphics it has
several versions for both Linux and windows. It has many
attractive features as advanced code coverage, mixed HDL
(Hardware Description Language) simulation, effective debug

environment and support for the major HDL[7].

 4.2 Quartus II
Quartus II is a tool for development and synthesis HDL created

by Altera. The Quartus II supports CPLDs (Complex
Programmable Logic Devices) and FPGAs made by Altera,
allowing the creation of circuits and test their embedded
simulation tools, analysis of RTL (Register-transfer Level)
diagrams and finite-state machines. It is also essential to work on
the boards of the company [8].

 5 SIMULATION AND RESULTS

Now will be explained the simulations and results obtained
with Keccak, simulations of used area were based on the FPGA
model Cyclone II from Altera, while the time performance was
obtained with the ModelSim tool.

 5.1 Execution time
For this test simulations were performed where the algorithm

had to individually apply the hash over ten different data blocks
and return values obtained. Every block contains 1600 bits and
therefore with a total processing 16000 bits, about 2 kilobytes of
information. Values were placed in the same text file that both
algorithms used, on the Table 2 we can see the comparison
between the time spent to complete the task:

As would be expected the performance difference is very large,
with high-speed coming up to 200 times faster. We can see the
difference better in Figure 2.

Low area High-speed
0

200000

400000

600000

800000

1000000

1200000

Figure2: Execution time

Table 2: Execution time

VERSION OF ALGORITHM Execution times (ns)

LOW AREA 1042820

HIGH-SPEED 5020

 5.2 Area consumption
Here the tests were done to measure the area occupied by the

algorithm. We did two comparisons in the first one compared the
algorithms just as the area occupied by Keccak, in the second
comparison we include also the area of memory used by the
algorithm of low area during its processing.

The Table 3 show the obtained results of the comparison. And
the Figure 3 show the graphical version of these values.

The comparison between high-speed and low area also was not
too surprising. Having an area more than 3 times smaller, version
low area really delivers what it promises, even losing in the time it
gets an incredible reduction in area, a trade-off that can be good.

But the biggest surprise was when we analyze the low area with
the additional memory it needed to run, it eventually generate a
greater amount of area that high-speed. Importantly, in a real
application this memory can be shared between several
algorithms, other words, this version still meets the goals of their

implementation, the Figure 3 shows a comparison of these results.

We can see that the number of register used in it grows
considerably. Its occurs because the memory was implemented
with a array of registers which has the size of a word, in this case
64 bits. In total the array has 64 registers, in other words 4096
bits. It still has 1543 logic elements more than the high-speed
version.

 6 CONCLUSION

The techniques that are used in the hardware implementation of
an algorithm have large effects on final results. We were able to
analyze two different perspectives of project that directed their
results to completely different sides. With some changes in the
project noted that the same algorithm can have very different
results even using the same metrics to measure their performance.

How an algorithm is designed also influence techniques that
we can use when we implement it. Thanks to the symmetry and
simplicity of its round function, Keccak allows trading off area for
speed and vice versa. Different architectures reflect different
trade-offs [5].

 7 REFERENCES

[1] Moreno, Edward, D. Fábio, B. Rodolfo. Criptografia em
Software e Hardware. 1st ed. São Paulo – Brazil. Bless.
2003.

[2] NIST(2012, November). cryptographic hash Algorithm
Competition. Available:
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

[3] NIST.(2012, October). Selects Winner of Secure Hash
Algorithm (SHA-3) Competition. Available:
http://www.nist.gov/itl/csd/sha-100212.cfm

[4] Bertoni, Guido; Daemen, Joan; Peeters, Michaël; Van
Assche, Gilles. Keccak in a nutshell Available:
http://keccak.noekeon.org/.

[5] Bertoni, Guido; Daemen, Joan; Peeters, Michaël; Van Assche,
Gilles.(2012, May) Keccak implementation overview. ,
Available: http://keccak.noekeon.org/Keccak-implementation-
3.2.pdf.

[6] Chang, Shu jen; Perlner, Ray; Burr, William E.; Turan,
Meltem Sönmez; Kelsey, John M.; Paul, Souradyuti;
Bassham, Lawrence E. . Third-Round Report of the SHA-3
Cryptographic Hash Algorithm Competition. Avaliable:
http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf.

[7] Mentor Graphics. ModelSim. Available:
http://www.mentor.com/products/fpga/simulation/modelsim

[8] Altera. Quartus II web edition. Available:
http://www.altera.com/products/software/quartus-ii/web-
edition/qts-we-index.html.

0

2000

4000

6000

8000

Figure 3: Area consumption

Low area
High-speed
Low area plus
additional
memory

Table 3: Area Consumption

Low area High-speed Low area plus
additional memory

Total logic elements 1595 5191 6734

Total combinational

functions

1572 3838 4579

Total registers 242 1671 4548

Total pins 140 130 130

	1 INTRODUCTION
	2 KECCAK ALGORITHM
	3 HARDWARE IMPLEMENTATION
	3.1 Main Project focused in Low area
	3.1.1 fsh.vhd
	3.1.2 pe.vhd

	3.2 Main Project Focused in High-speed
	3.2.1 keccak_buffer.vhd
	3.2.2 keccak_round_constants_gen.vhd
	3.2.3 keccak_round.vhd

	4 SIMULATION TOOLS
	4.1 ModelSim
	4.2 Quartus II

	5 SIMULATION AND RESULTS
	5.1 Execution time
	5.2 Area consumption

	6 CONCLUSION

