
Routing Clos-based Interconnection Networks
for Post-Silicon Debug

Fredy A. M. Alves
Instituto de Ciências Exatas e

Tecnológicas,Campus
UFV-Florestal

Florestal, Brasil
fredy.alves@ufv.br

Fernando A. D. Teixeira
Instituto de Ciências Exatas e

Tecnológicas,Campus
UFV-Florestal

Florestal, Brasil
fernando.teixeira@ufv.br

André B. M. Gomes
Departamento de Informática,

UFV
Instituto de Ciências Exatas e

Tecnológicas,Campus
UFV-Florestal

Florestal, Brasil
andre.maciel@ufv.br

Ricardo S. Ferreira
Departamento de Informática,

UFV
Viçosa, Brasil

ricardo@ufv.br

José Augusto M. Nacif
Departamento de Informática,

UFV
Instituto de Ciências Exatas e

Tecnológicas,Campus
UFV-Florestal

Florestal, Brasil
jnacif@ufv.br

ABSTRACT
In complex integrated circuit designs, pre-silicon verification can
not ensure an error-free environment. A post-silicon verification is
used to monitor the internal signal behavior after fabrication, al-
lowing to capture some errors at full clock speed. With the trace
buffer technique, it is possible to observe signals overtime, storing
trace data in a buffer. The size of the buffer, however, is limited due
to its cost, which also limits the amount of traced signals. An inter-
connection network is used to tap a larger set of signals, selecting a
subset to be stored in the buffer. In this paper, we present a 3-stage
Clos routing algorithm that connects a set of inputs to the outputs
of the interconnection network. Our algorithm uses a graph edge
coloring strategy and routes a 10,000x256 Clos network in less than
3 milliseconds.

Keywords
Verification, Trace-Based Debug, Interconnection Network

1. INTRODUCTION
Verification is a very challenging and the most time consuming
phase in the integrated circuit development cycle. In complex in-
tegrated circuit designs, pre-silicon verification can not ensure an
error-free environment. The techniques used on this strategy are
based on simulation and formal verification. Simulation allows a
wide circuit observability, but it is many times slower than running
the circuit at real clock frequency. Post-silicon verification is a set
of tools and techniques used to monitor and debug manufactured
circuits internal behavior. This process captures errors after mil-
lions of clock cycles. The post-silicon debug consumes more than
35% of the chip development cycle [1].

Unlike pre-silicon verification, post-silicon debug observability is
limited. Using the trace buffer method, a set of signals is captured
and stored during execution [9]. The trace buffer size is defined
by area cost constraints, limiting the number of traced signals [10].
An interconnection network allows the designer to choose a signal

subset to store in the buffer. The Clos network can be used to se-
lect those signals. For a large number of signals, the Clos network
introduces less area overhead than a crossbar network.

The Clos network is a multistage network proposed in [3]. The
network is characterized by a triple (m,n, r) where m is the num-
ber of middle stage switches, n is the number of ports in the in-
put and output switches, and r is the number of input and output
switches. This interconnection network class can be designed with
two types of topologies: strictly non-blocking and rearrangeable
non-blocking. The first allows routing without collision treatment
and the second performs a rearrangement when there is a path col-
lision.

In this work, we present a 3-stage Clos routing algorithm that con-
nects a set of inputs to the outputs of the interconnection network.
State-of-the-art routing algorithms can be divided into two differ-
ent categories: blocking avoidance routing, and routing irrespec-
tive of blocking [6]. The first tries to route a network avoiding to
block paths in each connection performed. Routing irrespective of
blocking routes requested connections treating path collisions. This
algorithm rearranges some connections in a way that all connec-
tions are routed. Both categories, for multistage interconnection
networks, can use 2 different types of strategies: Graph Coloring
or Matrix Decomposition [4]. Graph Coloring algorithm usually
presents better performance than matrix decomposition [6].

This work is outlined as follows. Sections 2 and 3 present a com-
prehensive explanation about the post-silicon trace buffer strategy,
asymmetric 3-stages Clos interconnection networks and related work.
Section 4 describes a routing algorithm using a graph edge coloring
strategy. Section 5 discusses our results and, finally, we conclude
our remarks and present future work in Section 6.

2. BACKGROUND
This Section presents background concepts about post-silicon de-
bug trace buffer and Clos networks.



2.1 Trace Buffer
Trace buffer is a post-silicon debug technique that allows the de-
signer to monitor internal signals over time at full clock speed. A
buffer is used to store the traced signals. The buffer size is defined
by two parameters: depth and width. The number of traced signals
determines the width and how many times a signal value is stored
determines the depth. The trigger logic monitors the circuit un-
der debug behavior and starts tracing the signals when pre-defined
conditions are met. The trace buffer strategy is illustrated in Fig-
ure 1. The interconnection network is located between the tapped
signals and the buffer. It allows the designer to choose a large sig-
nal number to tap, and then a small number of signals is selected to
be stored in the buffer.

Figure 1: Trace buffer block diagram.

2.2 Clos Networks
The Clos interconnection network was designed as a multistage
non-blocking network, so any input can be routed to an output.
This topology was presented in [3] as a replacement to the cross-
bar in the context of telephone systems. A 3-stage Clos network
is built by input, middle, and output stages. The Clos network is
characterized by a triple C(m,n, k), where m is the number of
middle stage switches; n is the number of ports in input and output
switches; k is the number of input and output switches. The 3-stage
Clos topology is shown on Figure 2.

Figure 2: 3-stage Clos network.

Let N be the number of network inputs and outputs. If we assume
that n = N1/2, then m = 2n− 1. When N ≡ r(mod n), an extra
switch is used to drive the remainder r from the input stage to the
output stage. So, under this condition, N = k ∗n+ r. Considering
an asymmetric 3-stage Clos network with N1 inputs and N2 out-
puts, the minimum number of switches in the intermediate stage is
m = (n1 − 1) + (n2 − 1) + 1.

3. RELATED WORK
Minimum Distribution Algorithm is a heuristic proposed in [5].
In [8], an asynchronous heuristic algorithm was proposed. In [7]
a study about multicast routing in Clos networks is presented. A
study about randomized Clos network routing is realized in [2].
The results are given in terms of fault tolerance and hardware de-
lay. In this work, we propose to present the results in terms of
execution time in order to evaluate the feasibility to use our algo-
rithm to route asymmetric Clos networks to be used in post-silicon
debug.

4. BIPARTITE GRAPH ROUTING
The algorithm used to route the asymmetric rearrangeable Clos net-
work is based on an unicast routing strategy where one input is
routed to only one output. In order to illustrate this concept, we
represent the network as a bipartite graph. In Figure 3, the left set
of vertices is the input switches (I1, I2, I3, In). The right set is
the output switches (O1, O2, O3, On). Each requisition to con-
nect an input switch Ia to an output switch Ob through a middle
switch Mc is represented by an edge from Ia to Ob. We treat this
process as an edge coloring problem, where a color is assigned to
each middle switch. The problem consists in assigning a color to
each edge in a way that no vertex is incident to two edges of the
same color [4].

Figure 3: Clos R3 12x12 graph representation.

In algorithm 1 we show the pseudocode of our implementation. To
route a connection from input Ia to output Ob, first we search for a
middle switch that is free for both Ia and Ob. If such switch exists,
the connection (Ia,Ob) is established and the routing process for
that requisition stops. If there is no such switch available, the pro-
cess of rearranging connections starts. We look for a free switch on
Ia and on Ob, storing their positions on the variables FreeMidIa
and FreeMidOb, respectively. The connection (Ic,Ob) is discon-
nected on FreeMidIa in order to enable the connection (Ia,Ob)
which is then realized. The next step is to try to connect (Ic,Ob)
on FreeMidOb. If such connection is free, it is established and
the routing process stops. Otherwise, the connection (Ic,Od) is
disconnected from FreeMidOb, (Ic,Ob) is established and the
algorithm runs another iteration with Ic as the new Ia and Od as
the new Ob.

To illustrate our algorithm, consider the (3, 3, 4) Clos network in
Figure 4. In order to connect the input port IP0 to the output
port OP0, the algorithm looks for a free middle switch for both
I0 and O0. The M0 switch is found, establishing the connec-
tion. The second connection is from IP4 to OP1. The algo-
rithm finds that M1 switch is free on I1 and O0, and establishes
the connection. The connections (IP8, OP2), (IP1, OP4), and
(IP5, OP5) are performed through middle switches M2, M1,
and M0, respectively, without any conflict. When the connection
(IP6, OP3) is requested, the algorithm can not find a free middle



Algorithm 1 Routing algorithm

1: procedure CONNECTIONREQUEST
2: FreeMidIaOb← Search Mid(freemida & freemidb)
3: if FreeMidIaOb > 0 then
4: Connect(Ia, Ob, FreeMidIaOb)
5: Stop_Routing
6: end if
7: FreeMidIa← Search_Mid(FreeIa)
8: FreeMidOb← Search_Mid(FreeOb)
9: Disconnect_IcOb_On_Mid(Ob, FreeMidIa)

10: Connect_IaOb_On_Mid(Ia, Ob, FreeMidIa)
11: Busy_IcOd← Disconnect_On_Mid(Ic,FreeMidOb)
12: if Busy_IcOd = 0 then
13: Connect_IcOb_On_Mid(Ic, Ob, FreeMidOb)
14: Stop_Routing
15: end if
16: Ia← Ic
17: Ob← Od
18: end procedure

switch, starting the rearrangement. The switch M0 is free on I2
and FreeMidIa = M0. M2 is free on O1, so FreeMidOb =
M2. The connection (IP5, OP5) is disconnected to free (I1, O1)
on M0, the connection (IP6, OP3) is realized and (IP5, OP5)
finds a free path through FreeMidOb, which is accomplished con-
necting (I1, O1).

Figure 4: Clos R3 12x12 topology.

5. RESULTS
Our experiments have been performed using asymmetric rearrange-
able 3-stage Clos networks. We have used the fixed numbers of in-
puts 100, 1,000, and 10,000. We have varied the number of outputs
to 32, 64, 128, and 256, resulting in 10 different Clos configura-
tions. These configurations have been routed 100 times each with a
random set of inputs. The average of the running times is presented
is Table 1 and Figure 5.

Execution times grow with the number of input ports because the
algorithm takes longer analyzing the number of switches. The time
for a 10,000x64 configuration is more than twice compared to the
1,000x64 which is composed by 10 times more input signals. This
does not happen between 100x64 and 1,000x64. This difference
can be explained because as 64 represents 64% of the inputs num-
ber on the 100x64 configuration, the probability that path collisions
will occur during a routing process is higher than on a 1,000x64

 0

 0.5

 1

 1.5

 2

100
1000

10000

Ex
ec

ut
io

n 
tim

e 
m

ed
ia

ns

Inputs

x32
x64

x128
x256

Figure 5: Configurations x average execution time.

Table 1: Algorithm average execution times.

Configuration Time(milliseconds)

100x32 0.023339
100x64 0.063789

1,000x32 0.020697
1,000x64 0.061192

1,000x128 0.175781
1,000x256 0.555299
10,000x32 0.061820
10,000x64 0.139006

10,000x128 0.388367
10,000x256 1.260512

configuration where 64 only represent 6.40% of the input ports,
therefore, the rearrangement process occur more on a 100x64 than
on a 1000x64 configuration, taking almost the same routing time
for both.

6. CONCLUSIONS AND FUTURE WORK
The post-silicon debug is one of the most important phases in an
integrated circuit verification. When using a trace-buffer strategy,
it is crucial to have an interconnection network in order to provide
a better observability of the circuit under debug. We have imple-
mented a robust routing algorithm for the asymmetric rearrangeable
Clos networks using a Graph Coloring based heuristic.

Our results show that, for an asymmetric Clos network designed
for a trace-buffer post silicon debug, our algorithm is able to route
all sets of inputs with the same amount as the outputs in less than 2
milliseconds, with almost no blocking.

For future work we intent to integrate the routing tool with our post-
silicon infrastructure. After that we will be able to dynamically
change the Clos network configuration on our prototype FPGAs.

Acknowledgments
We would like to thank CNPq, CAPES, UFV, FAPEMIG, and FU-
NARBE for the financial support.

7. REFERENCES
[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin,

G. Memmi, and D. Miller. A reconfigurable design-for-debug
infrastructure for socs. In Design Automation Conference,
2006 43rd ACM/IEEE, pages 7–12, 2006.



[2] M. Bhatia and A. Youssef. Performance analysis and fault
tolerance of randomized routing on clos networks. In
Frontiers of Massively Parallel Computing, 1996.
Proceedings Frontiers ’96., Sixth Symposium on the, pages
272–281, Oct 1996.

[3] C. Clos. A study of non-blocking switching networks. Bell
System Technical Journal, 32(2):406–424, 1953.

[4] W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

[5] X. Duan and S. Liu. A heuristic routing algorithm for clos
network. In Intelligent Control and Automation, 2008.
WCICA 2008. 7th World Congress on, pages 5892–5895,
June 2008.

[6] Z. S. Ghandriz, K. Zeinali, and P. Esmaeil. A new routing
algorithm for a three-stage clos interconnection networks.
International Journal of Computer Science Issues (IJCSI),

8(5), 2011.
[7] J.-M. Ho, D.-R. Liang, and K.-H. Tsai. On multicast routing

in clos networks. In Parallel Architectures, Algorithms, and
Networks, 1996. Proceedings., Second International
Symposium on, pages 394–400, Jun 1996.

[8] W. Song, D. Edwards, Z. Liu, and S. Dasgupta. Routing of
asynchronous clos networks. Computers Digital Techniques,
IET, 5(6):452–467, November 2011.

[9] J.-S. Yang and N. Touba. Improved trace buffer observation
via selective data capture using 2-d compaction for
post-silicon debug. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 21(2):320–328, Feb 2013.

[10] J.-S. Yang and N. A. Touba. Expanding trace buffer
observation window for in-system silicon debug through
selective capture. In Proceedings of the 26th IEEE VLSI Test
Symposium, VTS ’08, pages 345–351, Washington, DC,
USA, 2008. IEEE Computer Society.


	Introduction
	Background
	Trace Buffer
	Clos Networks

	Related Work
	Bipartite Graph Routing
	Results
	Conclusions and Future Work
	References

