
Reviewing AIG Equivalence Checking Approaches

Marcos Backes, Jody Maick Matos,
Renato Ribas and Andre Reis

UFRGS, Instituto de Informatica
Av. Bento Goncalves, 9500

Porto Alegre, RS, Brazil
{mhbackes,jody.matos,rpribas,andre.reis}@inf.ufrgs.br

ABSTRACT
This work presents a review of and-inverter graph (AIG)
equivalence checking approaches. It is well known that AIGs
are not canonical structures, i.e., the same functionality can
be represented with a different number of AIGs. In this
sense, a verification step for checking the equivalence be-
tween AIGs is mandatory when performing AIG transforma-
tion algorithms, such as rewriting procedures. The work pre-
sented herein reviews two main approaches to perform AIG
equivalence checking: (1) using BDDs to verify the aimed
equivalence, exploring the canonicity of this data structure;
and (2) transforming the AIG equivalence checking in a SAT
problem, using a SAT solver to perform the checking. The
SAT-based equivalence checking adopted in the work pre-
sented herein is based on Conjunctive Normal Form (CNF).
The CNFs are obtained by using the Tseitin Transforma-
tion. Applying the methodology proposed herein, the re-
sults show that almost 67% of the benchmark AIGs could
not be checked using the BDD approach due to the run-
ning time exceeded the threshold of 27 hours. In turn, the
SAT approach successfully verified 11 of the 12 benchmark
AIGs (almost 67% of them in less the 1 second). The SAT-
based approach also achieved a lower memory usage than
the BDD-based approach.

Keywords
Logic synthesis and verification, AIG equivalence checking,
BDD, SAT.

1. INTRODUCTION
Optimization of multi-level logic networks using logic syn-

thesis plays an important role in automated design flow,
specially in cell-based VLSI designs. Logic synthesis is of-
ten applied to the network derived by compiling HDLs, such
as VHDL or Verilog, and performing both technology-inde-
pendent and technology-dependent optimizations. The syn-
thesis task performed in this step of integrated circuit design
flow defines the logic used to implement a design [9, 11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

The most recent logic synthesis works are based on a type
of data structure called and-inverter graphs (AIG) [2, 16].
The AIG data structure (explained in detail further) can
be viewed as a graph composed of 2-input AND (AND2)
nodes, connected by direct or negated edges [16]. The state-
of-the-art logic synthesis tools, such as ABC [2], are able
to minimize the number of (AND2) nodes in AIGs. This
number can be directly correlated to the number of gates in
implementations using 2-input simple gates, such as ANDs,
ORs, NANDs and NORs. These gates are variants of the
primitive AND2, obtained by applying De Morgan’s law and
inversions.

Traditional AIG transformation approaches are mainly
focused in two specific goals: (1) minimizing the number
of AIG nodes, such as the refactor [4, 16] and rewrite ap-
proaches [16]; and (2) optimizing the delay estimation of
AIGs, such as the balance method [6, 16]. However, AIGs
are not canonical structures, i.e., the same functionality can
be represented with a different number of AIGs. In this
sense, a verification step for checking the equivalence be-
tween the AIG before the transformation and the resulting
AIG after the transformation is mandatory.

To verify the equivalence between AIGs, the most naive
approach is to compare them using a canonical structure.
The usual structure for this comparison is the binary de-
cision diagram (BDD) [15]. The BDD (explained in detail
further) represents a set of binary-valued decisions, culmi-
nating in an overall decision that could be TRUE or FALSE
[1, 7, 11, 13]. Since the reduced ordered BDD (ROBDD) is
canonical, the resulting ROBDD for equivalent AIGs shall
be exactly the same. Nonetheless, it is possible to perform
this equivalence checking using different approaches, such as
Boolean satisfiability (SAT). The SAT is known as the prob-
lem of analyzing if the variables of a given Boolean function
can be assigned in such a way as to make the function evalu-
ate to TRUE. A wide range of problems can be transformed
into instances of SAT. Algorithms called SAT solvers can
efficiently solve subsets of SAT instances, what is true for
AIG equivalence checking.

This work reviews the two main approaches to perform
AIG equivalence checking found on the literature: (1) using
BDDs to verify the aimed equivalence, exploring the canon-
icity of this data structure; and (2) transforming the AIG
equivalence checking in a SAT problem, using a SAT solver
to perform the checking. Applying the methodology pro-
posed herein, the results show that the SAT-based approach
is more suitable and scalable than the BDD-based approach.

The rest of the paper is organized as follows. Section

X Y Cin

Cout

(a)
X Y Cin

Cout

(b)

Legend:

AND node

PI node

PO node

Inverter Edge

Non-inverter Edge

CinX Y

Cout

(c)

Figure 1: A combinational circuit (a), its represen-
tation with AND2 gates and inverters (b), and one
possible AIG representation (c).

2 presents a background of AIGs, BDDs, Tseitin Transfor-
mation and Boolean Satisfiability (SAT). In Section 3 and
Section 4, we present methodologies to compare AIGs using
BDDs and SAT, respectively. Section 5 presents the exper-
imental results. Section 6 outlines the conclusions.

2. BACKGROUND
This section provides a basic technical background which

is essential for understanding the methodology approached
by this work: AIGs and BDDs as data structures commonly
used on logic synthesis; and the Boolean satisfiability prob-
lem (SAT), since SAT solvers can also be used to verify AIG
equivalences. The SAT-based equivalence checking adopted
in the work presented herein (presented in Section 4) is based
on Conjunctive Normal Form (CNF). Due to this reason, we
also review the Tseitin Transformation as an efficient way
to generate a CNF from a logic network.

2.1 And-Inverter Graph
An And-Inverter Graph (AIG) is a data structure used in

current state-of-the-art logic synthesis tools, like ABC [2].
AIGs are directed acyclic graphs (DAG) with specific types
of nodes: 2-input AND (AND2) nodes, primary input (PI)
nodes, and primary output (PO) nodes. Primary input
nodes have no incoming edges. AND2 nodes have two in-
coming edges. Any node of an AIG can be labeled as an
output node [16]. The edges of an AIG have a specific prop-

f

x y z

(a)

g

x yz

(b)

Figure 2: Example of AIG non-canonicity: (a) AIG
representing the function f = (x+ y)z; (b) AIG rep-
resenting the function g = xz+ zy. Notice that f ≡ g.

a

b

c

1 0

f

Function node

Internal node

Terminal node

1-edge

0-edge

Legend:

Figure 3: Example of BDD representing the func-
tion f = ab+ c.

erty: they are either in their positive or complemented form.
A Boolean signal arriving at the target node via a positive
edge has the same polarity as the source node. The comple-
mented form of an AIG edge indicates the Boolean inversion
operation of its signal [16]. Figure 1 shows a possible AIG
of the logic function Cout = ((x

⊗
y) · cin) + (x · y).

AIG is not a canonical structure, i.e., the same function
can be represented with a different number of AIGs. Figure
2 shows an example of AIG non-canonicity. In this sense,
the task of verifying the Boolean equivalence between two
AIGs plays an important role handling this data structure,
such as AIG rewriting approaches. In the following, reviews
of BDDs, Tseitin Transformation and SAT are presented
focusing on AIG equivalence checking.

2.2 Binary Decision Diagram
A Binary Decision Diagram (BDD) is a graph representa-

tion of Boolean functions. In this sense, a BDD represents a
set of binary-valued decisions, culminating in an overall deci-
sion that could be TRUE or FALSE. Though BDDs are rela-
tively old [1,13], they just began attracting the research com-
munity attention with the work of Bryant [5], which brought
out the advantages the Reduced Ordered BDD (ROBDD) as
canonical representations [7,11]. For simplicity, we will refer
to ROBDDs as BDDs.

Formally, a BDD is a directed acyclic graph (i.e., a di-
rected graph with no directed cycles) with two terminal
nodes, called 1-terminal and 0-terminal, which denote the
TRUE and FALSE decision, respectively. The nodes of a
BDD are partitioned into three subsets: function nodes Φ,
internal nodes V , and the terminal nodes {0, 1}. A function
node φ ∈ Φ denotes the function being represented, has one
outgoing edge and have no incoming edges. Each internal
node v ∈ V has a label l(v) ∈ SF , where SF denotes the
support of a function F , i.e., each label represents a vari-
able on which F actually depends. The internal nodes have
two outgoing edges: the 0-edge, which denotes the FALSE
decision with respect to source node of the edge; and the
1-edge, which denotes the TRUE decision with respect to
source node of the edge [7,9,11]. Figure 3 depicts the BDD
representing the function f = ab+ c.

2.3 Tseitin Transformation
The Tseitin Transformation is a procedure to generate a

Boolean equation in Conjunctive Normal Form (CNF) from

Table 1: Tseitin Transformation for Simple Gates
Gate Function Resulting CNF
NOT o = x (x+ o)(x+ o)
AND2 o = x · y (x+ y + o)(x+ o)(y + o)
OR2 o = x+ y (x+ y + o)(x+ o)(y + o)

NAND2 o = (x · y) (x+ y + o)(x+ o)(y + o)

NOR2 o = (x+ y) (x+ y + o)(x+ o)(y + o)

XOR2 o = x⊕ y (x+ y + o)(x+ y + o)
(x+ y + o)(x+ y + o)

a logic network [17]. A CNF formula is a way to represent
Boolean equations using only a conjunction of disjunctive
clauses, i.e., a Product-of-Sums, or POS. Possible results
for applying the Tseitin Transformation for simple gates are
shown in Table 1. In order to apply this transformation to
more complex circuits, a simple approach is generating the
conjunction of the Tseitin Transformation for each simple
gate of the circuit. As an example, the Tseitin Transforma-
tion of the logic network presented in Figure 4 results in the
CNF shown in Equation 1.

(x+z+a)(x+a)(z+a)(z+y+b)(z+b)(y+b)(a+b+o)(a+o)(b+o)
(1)

2.4 Boolean Satisfiability Problem
The Boolean Satisfiability (SAT) is a problem which, given

a Boolean function f(x0, x1, ..., xn), tries to determine if
there is a combination of values assigned to the input vari-
ables of f which evaluates the function to TRUE. If such
combination exists, then the function is called satisfiable,
else, it means that f = FALSE for every possible input and
it is called unsatisfiable.

SAT was the first known NP-complete problem. There-
fore, it is believed (but not proven) that there is no algorithm
which efficiently solves all SAT problems. A class of algo-
rithms called SAT solvers [8, 12, 14] are capable of solving
very efficiently a subset of SAT instances. Most of them re-
ceive as input the CNF formula generated by the application
of Tseitin Transformation.
f(x, y) = xy is an example of satisfiable Boolean function

because when x = TRUE and y = TRUE, f(x, y) =TRUE.
An example of unsatisfiable function is g(x) = xx, which for
both possible values of x, g(x) =FALSE.

3. AIG COMPARING USING BDD
For checking the equivalence of AIGs X and Y , we cre-

ate a BDD for each output of both X and Y . In this way,
we explore the canonicity of BDDs and the advantages of
a dynamic programming implementation. If the generated
BDDs are the same for every output x in X and its corre-
spondent output y in Y , then the AIGs are equivalent.

x

z

z

y

a

b

o

Figure 4: Circuit representation of f(x, y) = xz + zy

Table 2: AND2 and INV operations described using
ITE.

Name Expression ITE
AND(f, g) f · g ite(f, g, 0)

NOT (f) f ite(f, 0, 1)

To create the BDDs from the AIGs, we propose to use
the If-Then-Else (ITE) operator [3]. The ITE is a ternary
operator which forms the core of recursion based synthe-
sis operations for BDDs. ITE can be viewed as a Boolean
function defined for three operands as follows:

ite(F,G,H) = F ·G+ F ·H (2)

It is well known that ITE can be used to implement all
two-variable Boolean functions. In this sense, considering
that AIGs represent the circuit by using only 2-input ANDs
(AND2) and inverters (INV), the ITE operator can be effi-
ciently used to recursively create a BDD from an AIG ap-
plying the ITE assignment for each needed operation. Table
2 present both AND2 and INV operations described using
the ITE operator.

A big problem when comparing AIGs using BDD ap-
proach is that the number of nodes of the generated BDD
grows very fast. In the worst case, for n inputs, the size of
a BDD is 2n + 1 (considering both terminal nodes). There-
fore, the size of a BDD increases exponentially as the size
of input grows. This fact may cause low time performance
and high memory consumption when using BDDs.

4. AIG COMPARING USING SAT
The equivalence of Boolean functions can be checked us-

ing SAT [10]. Given two Boolean functions f(x0, ..., xn) and
g(x0, ..., xn), to check their equivalence with a SAT-based
approach, we first create a new function h(x0, ..., xn) =
f(x0, ..., xn)⊕ g(x0, ..., xn). Note that if f and g are equiva-
lent, then h = FALSE for any possible variable assignment,
i.e., the function h is unsatisfiable. We generate a CNF from
h using Tseitin transformation and apply a SAT solver on
this CNF. If h is unsatisfiable then f and g are equivalent,
else they represent different Boolean functions.

The method to compare AIGs with SAT used in this work
is very alike. Let X and Y be AIGs. To compare their
equivalence, we create a new AIG Z = X ⊕ Y . Considering
every node of Z as an AND2 gate and every inverter-edge
as a NOT gate, we derive the CNF formula using Tseitin
transformation and use this formula as input of a SAT solver.
X and Y are equivalent if and only if Z is unsatisfiable.

5. RESULTS
Both BDD-based and SAT-based methods for comparing

AIGs (presented in Section 3 and Section 4) were applied
over a set of benchmark circuits. For each of these circuits,
an initial AIG was obtained. Then, this AIG was rewritten
using refactor [4], balance [6] and rewriting [16] algorithms,
resulting in the final AIG. The equivalence checking was
done between the final and the initial AIGs using both BDD
and SAT approaches. To evaluate the efficiency of the com-
parison methods, a running time measure was performed.

Table 3: Runtime analysis for both BDD and SAT AIG equivalence checking when comparing the benchmark
circuit to the same implementation after applying rewriting algorithms.

CIRCUIT #IN #OUT #NODES TIME MEMORY

SAT BDD SAT BDD

C17 5 2 6 14 ms 1 ms 93.3 MB 3.2 MB
C432 36 7 127 58 ms 29.6 min 94.4 MB 3.7 MB
C499 41 32 386 367 ms > 27 hours 99.4 MB 2.3 MB
C880 60 26 306 84 ms 1 hour 94.4 MB 65.7 MB
C1355 41 32 390 777 ms > 27 hours 98.3 MB 2.2 MB
C1908 33 25 354 490 ms 25.4 hours 98.4 MB 44.1 MB
C2670 233 139 534 351 ms > 27 hours 101.3 MB 85.6 MB
C3540 50 22 918 4 sec > 27 hours 110.3 MB 62.3 MB
C5315 178 123 1323 1.3 sec > 27 hours 113.4 MB 8.4 MB
C6288 32 32 1870 > 27 hours > 27 hours 1.1 GB 2.6 GB
C7552 207 108 1377 701 ms > 27 hours 132.4 MB 42.3 MB
i10 257 224 1799 1.5 sec > 27 hours 128.4 MB 102 MB
RATIO - - - 1.00 8.96 1.00 1.35

The proposed approaches were implemented using C++ pro-
graming language and compiled with g++ 4.8.2 compiler.
The experiments were performed in a machine with Intel(R)
Core(TM) i3-M330 @ 2.33GHz CPU, 4Gb RAM.

Table 3 presents the main results we obtained. Columns
labeled ”#IN”, ”#OUT” and ”#NODES” present, respec-
tively, the number of inputs, outputs and AND nodes of the
benchmark AIGs. The columns ”TIME” and ”MEMORY”
present the running time and memory usage for comparing
both initial and final AIGs using BDD and SAT approaches.
The experiments were performed until the running time ex-
ceeds a limit of 27 hours. Notice that the running time of
BDD method exceeds this limit in 8 of the 12 compared
AIGs. The average running time of the BDD-based ap-
proach is 8.96 times slower than the SAT-based approach.
Rather, SAT-based method was able to compare AIGs un-
der the threshold time for most of the circuits. With respect
to memory usage, notice that using BDDs needed 35% more
memory than the SAT counterpart.

6. CONCLUSIONS
This paper presented a review for AIG equivalence check-

ing. In this work, we analyzed both BDD and SAT ap-
proaches. Applying these two methods over a set of bench-
mark AIGs, the results show that the results show that al-
most 67% of the benchmark AIGs could not be checked us-
ing the BDD approach due to the running time exceeded the
threshold of 27 hours. On the other hand, the SAT approach
successfully verified 11 of the 12 benchmark AIGs (almost
67% of them in less the 1 second). The SAT-based approach
also achieved a lower memory usage than the BDD-based ap-
proach. However, as equivalence checking is a NP-complete
problem, it still does not exist an algorithm that efficiently
checks the equivalence of AIGs for every input.

7. REFERENCES
[1] S. B. Akers. Binary Decision Diagrams. IEEE Trans.

on Computer, 27(6):509–516, 1978.

[2] Berkeley Logic Synthesis and Verification Group.
ABC: A System for Sequential Synthesis and
Verification. Release 20130425.

[3] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient
implementation of a BDD package. In Proc. of Design
Automation Conference (DAC), 1991.

[4] R. K. Brayton and C. McMullen. The decomposition
and factorization of boolean expressions. In Proc. of
Int’l Symp. on Circuits and Systems (ISCAS), 1982.

[5] R. E. Bryant. Graph-based algorithms for Boolean
functions manipulation. IEEE Trans. on Computer,
35(8):677–691, 1986.

[6] J. Cortadella. Timing-driven logic bi-decomposition.
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 22(6):675–685, 2003.

[7] G. de Micheli. Synthesis and optimization of digital
circuits. Tata McGraw-Hill Education, 2003.

[8] N. Een and N. Sörensson. MiniSat: A SAT solver with
conflict-clause minimization. Sat, 5, 2005.

[9] S. H. Gerez. Algorithms for VLSI Design Automation.
John Wiley & Sons Ltd, West Sussex, 1 edition, 1999.

[10] E. Goldberg, M. Prasad, and R. Brayton. Using sat
for combinational equivalence checking. In Proc. of
Design, Aut. and Test in Europe (DATE), 2001.

[11] G. D. Hachtel and F. Somenzi. Logic Synthesis and
Verification Algorithms. Kluwer Academic Publishers,
Norwell, Massachusetts, 1 edition, 1996.

[12] Y. Hamadi, S. Jabbour, and L. Sais. Manysat: a
parallel sat solver. JSAT, 6(4), 2009.

[13] C. Y. Lee. Binary Decision Programs. Bell System
Technical Journal, 38(4):985–999, 1959.

[14] Y. S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An
efficient sat solver. In Theory and Applications of
Satisfiability Testing, 2005.

[15] Y. Matsunaga. An efficient equivalence checker for
combinational circuits. In Proc. of Design Automation
Conference (DAC), 1996.

[16] A. Mishchenko, S. Chatterjee, and R. Brayton.
DAG-aware AIG rewriting: a fresh look at
combinational logic synthesis. In Proc. of Design
Automation Conf. (DAC), 2006.

[17] G. S. Tseitin. On the complexity of derivation in
propositional calculus. Studies in constructive

