
An Implementation of AES Algorithm in FPGA
Isaac Nattan da Silva Palmeira, Alcir Cledson de S. Góis, Wanderson Roger Azevedo Dias,

Edward David Moreno
Department of Computing - DComp
Federal University of Sergipe - UFS

Aracaju, Sergipe, Brazil

{isaacnattan2, wradias, edwdavid}@gmail.com, alcirgois@yahoo.com

ABSTRACT
This article aims to present an alternative implementation of the

Rijndael algorithm, the AES (Advanced Encription Standart).

The algorithm described above is able to encrypt pieces of 16-

byte text using a key of the same size. The basic operations of

the AES operation will be described: AddRoundKey, SubBytes,

ShiftRows, MixColumns, and their respective inverses still a

key generator algorithm (KeyExpansion).

Keywords

cryptography; AES algorithm; encryption; decryption.

1. INTRODUCTION
Encryption originates from the greek word which means cryptos

secret or hidden. The objective of cryptography are encryption

methods or data messages so that only the legitimate receiver of

certain information may have access to it. In the treatment of

problems related to information security is added to it the

existence of cryptanalysis, responsible for studying the means

of deciphering an encrypted message without all the

information needed to decode the message correctly.

Encryption electronics began to be used after the Second World

War. But not until 1974 that the first cryptographic algorithm

has been used in a commercial manner. Lucifer was developed

by IBM and, after several changes made by the NSA (National

Security Agency), came to be called DES (Data Encryption

Standart) then being used as a U.S. cryptographic standard.

For 20 years, DES was the default algorithm used by the

Yankee government to protect confidential information. The

emergence of the AES (Advanced Encryption Standard) was

due to the great need to replace DES, which has become

outdated because of the small key size (56 bits) used. For this,

the NIST (National Institute of Standards and Technology) has

launched a competition in 1997 to adopt the new symmetric

algorithm, which would be called AES.

The algorithm should meet some requirements such as:

copyright free, public disclosure, faster compared to DES, block

cipher with 128-bit keys of 128, 192 and 256 bits, possibility of

implementation in software and hardware.

The algorithm was created by Belgian Vincent Rijmen and Joan

Daemen. As both the first in the second stage of the competition

all the algorithms described meeting requirements of the tender,

the decision was made based on other qualities such as security,

flexibility, good performance in software and hardware etc.

2. ALGORITHMIC STRUCTURE OF AES
Some concepts are of vital importance for the understanding of

the proposed algorithm, one is understanding what comes to the

state. The state is an array of bytes that will be handled during

the various rounds or rounds, and therefore will change every

step.

The size of the array will depend on the block size used,

consisting of four rows and columns Nb, where Nb is the

number of bits divided by the block 32. The proposed algorithm

has the ability to encrypt text of 128 bits (16 bytes) , thus the

state will have 4x4 size. The main key is grouped in the same

way that the state with Nk columns.

As the number of rounds AES or number of rounds varies

depending on the key length, and Nr (number of rounds) of 10,

12 and 14 for Nk (number of columns) equal to 4, 6 and 8

respectively. In each round of the encryption algorithm, five

steps are performed: AddRoundKey, SubBytes, ShiftRows,

MixColumns and KeyExpansion algorithm. In the last round,

however, the MixColumns operation is suppressed.

2.1 Mathematical Considerations
Various operations are defined in the AES bytes, with one byte

represented in the finite field GF (28), which mathematically

defines a Galois field, also known as Galois Field (GF).

1.1.1. GF(2
8
)

The GF (28) symbolizes a field, algebraic structure which has

two operations {+, ∙} addition and multiplication respectively,

closed on elements of the field.

Definition 1.1: a field is a set F with two laws of composition C

and such that.

 (F +) / C is a commutative group;

 (F ∙) /, where F \ {0}, is a commutative group;

 the distributive law holds.

A field contains at least two distinct elements '0 'and '1'.

2.1.2. Addition in GF(2
8
)

The addition of polynomials in GF (28), corresponds to the

XOR (exclusive OR) bitwise.

2.1.3. Multiplication in GF(2
8
)

In the polynomial representation, this procedure corresponds to

polynomial multiplication already known, ie, applying the

distributive property, whereas the degree of the resulting

polynomial can never be greater than or equal to eight, hence

the name GF (28). For the degree of the polynomial higher than

or equal to eight (8 ≥ g) is added to the irreducible polynomial

m(x)= xg + xg-4 + xg-5 + xg-7 + xg-8.

2.2 AES Transformations
Possession of some mathematical considerations and a brief

introduction of algorithmic structure of the AES, the basic

functions that operate behind the encryption/decryption of a

block process will be presented.

2.2.1. AddRoundKey
The AddRoundKey operation is nothing more than a bitwise

xor operation between the state and the key round. This is the

one that has no reverse, in the deciphering process is used with

the following keys generated backwards. The Figure 1 shows

schematically how this operation works.

Figure 1. Operation schematic AddRoundKey.

2.2.2. SubBytes and its Inverse
SubBytes transformation modifies the values of the state based

on a substitution box (S-Box), using the bytes from the current

state as indices to the values contained in the S-Box used. The

S-Box is an array of size 16x16 with different hex values. The

replacement is performed as follows: the first and second

current number hexadecimal value respectively represent the

row and column of the value contained in the S-Box. In this

case the inverse transform process applies, however considering

the inverse S-box.

2.2.3. ShiftRows and its Inverse
This transformation consists in a rotation left the state lines so:

(i) the first line is not amended; (ii) the second one suffers a

rotation line; (iii) the third line suffers two rotations; (iv) the

fourth line suffers three rotations. The Figure 2 shows how this

process works.

2.2.4. MixColumns and its Inverse
MixColumns transformation is performed in a matrix

multiplication in GF (28). The state is being modified

multiplied by a constant matrix formed by variations of the

polynomial a (x) = {02}+{03}+{01}+{01}, the matrix formed

by the variations of the polynomial is shown the Figure 3.

Figure 2. Operation schematic ShiftRows.

Figure 3. MixColumns constant Matrix.

In its reverse process happens analogously differing only in the

constant matrix used (see Figure 4).

Figure 4. InvMixColumns constant Matrix.

2. KEYEXPANSION ALGORITHM
For each round in the implementation of the algorithm is

applied to a key, specifically the implementation of the

transformation AddRoundKey. These keys are generated by

KeyExpansion algorithm.

The key generation operation is to be applied to each word as

they are known the columns of the state, one of the approaches

to two distinct situations:

If the first byte of the word is not operated multiple of Nk, the

new word will receive the result of the xor operation between

the word and the word immediately preceding the previous key

corresponding position.

If the identifier word op is a multiple of Nk, one xor should be

applied between the replacement using the S-Box, the word

immediately preceding rotated to the left, and the constant

round of RC [j]. Then a new xor between the result of the

previous operation and the word of the previous key

corresponding position will be applied. The following table

shows all the constants used in the rounds of the algorithm (see

Table 1).

Table 1. Constants of Rounds

RC[1] 01 (0000 0001)

RC[2] 02 (0000 0010)

RC[3] 04 (0000 0100)

RC[4] 08 (0000 1000)

RC[5] 10 (0001 0000)

RC[6] 20 (0010 0000)

RC[7] 40 (0100 0000)

RC[8] 80 (1000 0000)

RC[9] 1b (0001 1011)

RC[10] 36 (0011 0110)

4. COMPLETE PROCEDURE OF THE

AES ALGORITHM
Transformations in the encryption process can be followed in

Figure 5. Deciphers In the sequence is exactly the reverse

process to that shown.

Figure 5. Complete procedure of cryptography.

The AES algorithm has been implemented with a view to

saving space. Since the goal was to develop a method encrypts

and decrypts, we studied the possibility of merging the

transformations with their inverse and found, from this, the

union between these factors. SubBytes operation for this factor

was not found, but this was united with its inverse in order to

reduce complexity.

ShiftRows transformation was realized that the same rotations

that its inverse could be applied in reverse order. Thus the

rotation applied to the third row would be the same for both

cases.

The uniting factor found between the MixColumns operation

and its inverse is the generalization of the constant matrix (see

Figure 6).

Where the variable d assume '0 'and '1 in encryption process' in

the decrypts. Once the changes merged, the complete algorithm

should meet two methods of transformation of the state.

Viewing this way the key generator would have to be

completely executed before this, since in the latter decrypts key

generated would be first processed.

Figure 6. Generalization of constant matrixes.

The transformation of state always start with the AddRoundKey

operation. This would follow in the next transformations, based

on the method and the round in question.

5. SOME RESULTS
All functions were simulated and analyzed in isolation and

together, with the aid of the tool Amendment Quartus II version

9.0 and targeted for implementation in FPGA (DE-2

Amendment) capable of supporting up to 33.216 logic elements.

The results of Table 2 can be obtained.

Having the data, the algorithm KeyExpansion was the most

costly, but the complexity of the algorithm analyzing your time

will be considered constant compared with the transformation

of the state.

Table 2. Time and Space Statistics

 Time

(ns)

Space the FPGA

(logic elements)

AddRoundKey 12.124
128

<1% of the capacity maximum

SubBytes 19.278
6720

20% of the capacity maximum

ShiftRows 12.822
64

<1% of the capacity maximum

MixColumns 17.137
472

 1% of the capacity aximum

KeyExpansion 90.828
8904

27% of the capacity maximum

COMPLETE 771.12
21421

64% of the capacity maximum

Thus to evaluate the method of encryption/decryption simply

collect the transformation of worse weather (SubBytes), this

time is the minimum time clock, and multiply it by the number

of times that each transformation is applied. Thus we have:

Minimum Time = 19.278 ns ∙ 40 = 771.12 ns

With this result it is possible to estimate the throughput as:

Transfer Fee = 128 bits/s 771.12 ≈ 166 Mbits/s

In the spatial aspect, the complete algorithm using totaled

21.421 logic elements, about 64% of the maximum capacity of

the FPGA, among them we can highlight:

 Use of 1.540 bit registers (11 keys, current state and

round in question);

 4.186 bits of ROM (S-Box and Inverse, constant

round and constant matrices).

The Figure 7 shows the state machine of the AES.

Figure 7. Complete procedure of cryptography.

6. CONCLUSIONS
Compared with other implementations, which separated their

algorithms in cipher and decipher, one can notice the

duplication of all transformations, mainly MixColumns which

is of considerable size, so there's no doubt about space

reduction of the proposed algorithm. With the separation of the

methods, times cipher were evaluated separately from the times

of decrypts, weighing more in the second, more precisely the

inverse of the MixColumns operation, so the implementation

proposal should be compared to the decryption, since the union-

inverse transformation does not compromise much run time.

This implementation also enables the use of pipeline - proposed

future implementation. Could be a sharing of transformations

for up to three blocks of the state. Thus, the throughput obtained

for one block would be tripled, thereby increasing its speed of

execution.

7. REFERENCES
[1] Daemen, J., and Rijmen, V. "AES submission document

on Rijndael - version 2", September 1999.

[2] FIPS PUB 197, "Advanced Encryption Standard (AES)",

National Institute of Standards and technology, U.S.

Department of Commerce, November 2001. Link in:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[3] Daemen, J., and Rijmen, V. "The Rijndael Block Cipher,

AES Proposal: Rijndael". Link in:

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-

ammended.pdf.

[4] Mathias, L. A. P. "Algoritmo AES - Relatório técnico da

disciplina Redes I", UFRJ, Julho 2011. Link in:

http://www.gta.ufrj.br/grad/05_2/aes/.

[5] Ordoñez, E. D. M., Pereira, F. D., Penteado, C. G., and

Pericine, R. de A., "Projeto, Desempenho e Aplicação de

Sistemas Digitais em Circuitos Programáveis (FPGAs)".

Marília – SP: Bless, 2004.

[6] Milene, J. S., "Fields and Galois Theory - Version 4.22",

March 30, 2011. Link in:

http://www.jmilne.org/math/CourseNotes/FT.pdf.

