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ABSTRACT 
This article aims to present an alternative implementation of the 

Rijndael algorithm, the AES (Advanced Encription Standart). 

The algorithm described above is able to encrypt pieces of 16-

byte text using a key of the same size. The basic operations of 

the AES operation will be described: AddRoundKey, SubBytes, 

ShiftRows, MixColumns, and their respective inverses still a 

key generator algorithm (KeyExpansion). 
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1.  INTRODUCTION 
Encryption originates from the greek word which means cryptos 

secret or hidden. The objective of cryptography are encryption 

methods or data messages so that only the legitimate receiver of 

certain information may have access to it. In the treatment of 

problems related to information security is added to it the 

existence of cryptanalysis, responsible for studying the means 

of deciphering an encrypted message without all the 

information needed to decode the message correctly. 

Encryption electronics began to be used after the Second World 

War. But not until 1974 that the first cryptographic algorithm 

has been used in a commercial manner. Lucifer was developed 

by IBM and, after several changes made by the NSA (National 

Security Agency), came to be called DES (Data Encryption 

Standart) then being used as a U.S. cryptographic standard. 

For 20 years, DES was the default algorithm used by the 

Yankee government to protect confidential information. The 

emergence of the AES (Advanced Encryption Standard) was 

due to the great need to replace DES, which has become 

outdated because of the small key size (56 bits) used. For this, 

the NIST (National Institute of Standards and Technology) has 

launched a competition in 1997 to adopt the new symmetric 

algorithm, which would be called AES. 

The algorithm should meet some requirements such as: 

copyright free, public disclosure, faster compared to DES, block 

cipher with 128-bit keys of 128, 192 and 256 bits, possibility of 

implementation in software and hardware. 

The algorithm was created by Belgian Vincent Rijmen and Joan 

Daemen. As both the first in the second stage of the competition 

all the algorithms described meeting requirements of the tender, 

the decision was made based on other qualities such as security, 

flexibility, good performance in software and hardware etc. 

2.  ALGORITHMIC STRUCTURE OF AES 
Some concepts are of vital importance for the understanding of 

the proposed algorithm, one is understanding what comes to the 

state. The state is an array of bytes that will be handled during 

the various rounds or rounds, and therefore will change every 

step. 

The size of the array will depend on the block size used, 

consisting of four rows and columns Nb, where Nb is the 

number of bits divided by the block 32. The proposed algorithm 

has the ability to encrypt text of 128 bits (16 bytes) , thus the 

state will have 4x4 size. The main key is grouped in the same 

way that the state with Nk columns. 

As the number of rounds AES or number of rounds varies 

depending on the key length, and Nr (number of rounds) of 10, 

12 and 14 for Nk (number of columns) equal to 4, 6 and 8 

respectively. In each round of the encryption algorithm, five 

steps are performed: AddRoundKey, SubBytes, ShiftRows, 

MixColumns and KeyExpansion algorithm. In the last round, 

however, the MixColumns operation is suppressed. 

2.1  Mathematical Considerations 
Various operations are defined in the AES bytes, with one byte 

represented in the finite field GF (28), which mathematically 

defines a Galois field, also known as Galois Field (GF). 

1.1.1. GF(2
8
) 

The GF (28) symbolizes a field, algebraic structure which has 

two operations {+, ∙} addition and multiplication respectively, 

closed on elements of the field.  

Definition 1.1: a field is a set F with two laws of composition C 

and such that. 

 (F +) / C is a commutative group;  

 (F ∙) /, where F \ {0}, is a commutative group;  

 the distributive law holds.  

A field contains at least two distinct elements '0 'and '1'. 

2.1.2. Addition in GF(2
8
) 

The addition of polynomials in GF (28), corresponds to the 

XOR (exclusive OR) bitwise.  

2.1.3. Multiplication in GF(2
8
) 

In the polynomial representation, this procedure corresponds to 

polynomial multiplication already known, ie, applying the 

distributive property, whereas the degree of the resulting 

polynomial can never be greater than or equal to eight, hence 

the name GF (28). For the degree of the polynomial higher than 

or equal to eight (8 ≥ g) is added to the irreducible polynomial 

m(x)= xg + xg-4 + xg-5 + xg-7 + xg-8.  

2.2  AES Transformations 
Possession of some mathematical considerations and a brief 

introduction of algorithmic structure of the AES, the basic 

functions that operate behind the encryption/decryption of a 

block process will be presented. 

 

 



2.2.1. AddRoundKey 
The AddRoundKey operation is nothing more than a bitwise 

xor operation between the state and the key round. This is the 

one that has no reverse, in the deciphering process is used with 

the following keys generated backwards. The Figure 1 shows 

schematically how this operation works. 

  

Figure 1.  Operation schematic AddRoundKey. 

 

2.2.2. SubBytes and its Inverse 
SubBytes transformation modifies the values of the state based 

on a substitution box (S-Box), using the bytes from the current 

state as indices to the values contained in the S-Box used. The 

S-Box is an array of size 16x16 with different hex values. The 

replacement is performed as follows: the first and second 

current number hexadecimal value respectively represent the 

row and column of the value contained in the S-Box. In this 

case the inverse transform process applies, however considering 

the inverse S-box.  

2.2.3. ShiftRows and its Inverse 
This transformation consists in a rotation left the state lines so: 

(i) the first line is not amended; (ii) the second one suffers a 

rotation line; (iii) the third line suffers two rotations; (iv) the 

fourth line suffers three rotations. The Figure 2 shows how this 

process works.  

2.2.4. MixColumns and its Inverse 
MixColumns transformation is performed in a matrix 

multiplication in GF (28). The state is being modified 

multiplied by a constant matrix formed by variations of the 

polynomial a (x) = {02}+{03}+{01}+{01}, the matrix formed 

by the variations of the polynomial is shown the Figure 3.  

 

 

Figure 2.  Operation schematic ShiftRows. 

 

 

 

 

Figure 3.  MixColumns constant Matrix. 

 

In its reverse process happens analogously differing only in the 

constant matrix used (see Figure 4). 

 

 

 

 

 

Figure 4.  InvMixColumns constant Matrix. 

 

2. KEYEXPANSION ALGORITHM 
For each round in the implementation of the algorithm is 

applied to a key, specifically the implementation of the 

transformation AddRoundKey. These keys are generated by 

KeyExpansion algorithm. 

The key generation operation is to be applied to each word as 

they are known the columns of the state, one of the approaches 

to two distinct situations: 

If the first byte of the word is not operated multiple of Nk, the 

new word will receive the result of the xor operation between 

the word and the word immediately preceding the previous key 

corresponding position. 

If the identifier word op is a multiple of Nk, one xor should be 

applied between the replacement using the S-Box, the word 

immediately preceding rotated to the left, and the constant 

round of RC [j]. Then a new xor between the result of the 

previous operation and the word of the previous key 

corresponding position will be applied. The following table 

shows all the constants used in the rounds of the algorithm (see 

Table 1). 

 
Table 1.  Constants of Rounds 

RC[1] 01  ( 0000 0001 ) 

RC[2] 02  ( 0000 0010 ) 

RC[3] 04  ( 0000 0100 ) 

RC[4] 08  ( 0000 1000 ) 

RC[5] 10  ( 0001 0000 ) 

RC[6] 20  ( 0010 0000 ) 

RC[7] 40  ( 0100 0000 ) 

RC[8] 80  ( 1000 0000 ) 

RC[9] 1b  ( 0001 1011 ) 

RC[10] 36  ( 0011 0110 ) 

 

4. COMPLETE PROCEDURE OF THE 

AES ALGORITHM 
Transformations in the encryption process can be followed in 

Figure 5. Deciphers In the sequence is exactly the reverse 

process to that shown. 



 

Figure 5.  Complete procedure of cryptography. 

 
The AES algorithm has been implemented with a view to 

saving space. Since the goal was to develop a method encrypts 

and decrypts, we studied the possibility of merging the 

transformations with their inverse and found, from this, the 

union between these factors. SubBytes operation for this factor 

was not found, but this was united with its inverse in order to 

reduce complexity. 

ShiftRows transformation was realized that the same rotations 

that its inverse could be applied in reverse order. Thus the 

rotation applied to the third row would be the same for both 

cases.  

The uniting factor found between the MixColumns operation 

and its inverse is the generalization of the constant matrix (see 

Figure 6). 

Where the variable d assume '0 'and '1 in encryption process' in 

the decrypts. Once the changes merged, the complete algorithm 

should meet two methods of transformation of the state. 

Viewing this way the key generator would have to be 

completely executed before this, since in the latter decrypts key 

generated would be first processed. 

 

 

 

Figure 6. Generalization of constant matrixes. 

 
The transformation of state always start with the AddRoundKey 

operation. This would follow in the next transformations, based 

on the method and the round in question. 

5.  SOME RESULTS 
All functions were simulated and analyzed in isolation and 

together, with the aid of the tool Amendment Quartus II version 

9.0 and targeted for implementation in FPGA (DE-2 

Amendment) capable of supporting up to 33.216 logic elements. 

The results of Table 2 can be obtained.  

Having the data, the algorithm KeyExpansion was the most 

costly, but the complexity of the algorithm analyzing your time 

will be considered constant compared with the transformation 

of the state. 

Table 2.  Time and Space Statistics 

 Time 

(ns) 

Space the FPGA 

(logic elements) 

AddRoundKey 12.124 
128 

<1% of the capacity maximum 

SubBytes 19.278 
6720 

20% of the capacity maximum 

ShiftRows 12.822 
64 

<1% of the capacity maximum 

MixColumns 17.137 
472 

     1% of the capacity aximum 

KeyExpansion 90.828 
8904 

27% of the capacity maximum 

COMPLETE 771.12 
21421 

64% of the capacity maximum 

 
Thus to evaluate the method of encryption/decryption simply 

collect the transformation of worse weather (SubBytes), this 

time is the minimum time clock, and multiply it by the number 

of times that each transformation is applied. Thus we have: 

Minimum Time = 19.278 ns ∙ 40 = 771.12 ns 

With this result it is possible to estimate the throughput as: 

Transfer Fee = 128 bits/s 771.12 ≈ 166 Mbits/s 

In the spatial aspect, the complete algorithm using totaled 

21.421 logic elements, about 64% of the maximum capacity of 

the FPGA, among them we can highlight:  

 Use of 1.540 bit registers (11 keys, current state and 

round in question);  

 4.186 bits of ROM (S-Box and Inverse, constant 

round and constant matrices).  

The Figure 7 shows the state machine of the AES. 

 

 

 

 

 

 

 

 

 

 
Figure 7.  Complete procedure of cryptography. 

 

6.  CONCLUSIONS 
Compared with other implementations, which separated their 

algorithms in cipher and decipher, one can notice the 

duplication of all transformations, mainly MixColumns which 

is of considerable size, so there's no doubt about space 

reduction of the proposed algorithm. With the separation of the 

methods, times cipher were evaluated separately from the times 

of decrypts, weighing more in the second, more precisely the 

inverse of the MixColumns operation, so the implementation 



proposal should be compared to the decryption, since the union-

inverse transformation does not compromise much run time. 

This implementation also enables the use of pipeline - proposed 

future implementation. Could be a sharing of transformations 

for up to three blocks of the state. Thus, the throughput obtained 

for one block would be tripled, thereby increasing its speed of 

execution. 
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