
Improving FlexMap Tool to Explore Preprocessing

and Post-processing Techniques

João Júnior da Silva Machado, Julio S. Domingues Junior
Leomar Soares da Rosa Jr., Felipe de Souza Marques

Group of Architecture and Integrated Circuits
Federal University of Pelotas

{jjdsmachado, jsdomingues, leomarjr, felipem}@inf.ufpel.edu.br

ABSTRACT
This paper addresses preprocessing and post-processing

approaches applied through the logic synthesis flow. In this

context, it proposes an extension to the FlexMap tool, allowing it

to explore iterative methods and techniques during the technology

mapping step. This extension is focused on handling EQN format

and the obtained results demonstrate that such strategy is able to

improve up to 50% when comparing to other mapping

approaches.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – automatic synthesis,

optimization, simulation, verification.

General Terms
Algorithms, Design, Experimentation, Performance, Verification.

Keywords
Technology Mapping, Logic Synthesis, EDA Tools.

1. INTRODUCTION
The Integrated Circuits (IC) manufacturing process has been

improved along the last decades. However, even with advanced

project techniques and Electronic Design Automation (EDA)

tools, the IC design is not a trivial task. This is due to the short

design cycle and the complexity of IC designs that usually have

millions of logic gates. Thus, EDA tools are widely used by both

the microelectronics industry and the academy.

Usually, the synthesis tools are mainly divided in three steps:

high-level, logical and physical synthesis. The first one is

responsible to synthetize a hardware description (Hardware

Description Language - HDL) in a netlist of logic gates. The

second step, the logic synthesis, performs technology independent

optimizations and technology mapping. As stated in [7], it defines

the main characteristics of the circuit, concerning area, power,

delay, etc. Finally, the physical synthesis step takes the mapped

netlist and basically performs place and route routines considering

design rules of a manufacturing process, in order to generate the

circuit layout [12].

This paper is mainly interested in the logic synthesis process.

There are some algorithms that can be applied to optimize a logic

description (technology independent optimizations), for instance,

functional decomposition [2], factorization [4], two-level

minimization [10], etc. Accordingly, to the standard cell

methodology, the technology mapping procedure takes a logic

description and transforms it into an interconnected netlist of

cells. It defines the main structural characteristics of the circuit

that will be reflected in the IC layout. Technology mapping may

help to reduce the wire length leading to less congestion.

This way, the use of decomposition and factoring techniques

associated to technology mapping steps can achieve better results

in terms of area and power consumption. An example of this

approach can be found in [8], which explores the factorization and

decomposition to generate more optimized circuits. Kong [6] uses

a similar approach, but exploring some SIS [11] scripts.

Since we are interested to work on logic synthesis algorithms, we

have to handle different circuit descriptions, such as truth tables,

sets of equations, graphs, etc. In this paper, we use both EQN and

AIGER formats. The first one is developed by Synopsys, and it

describes the logical function of a Boolean function through an

equation. On the other hand, the AIGER format is provided by the

Institute for Formal Models and Verification (FMV) from Austria.

This format is used to describe an And-Inverter Graph (AIG),

which is exclusively composed by 2-input AND nodes and edges

that have an inversion attribute.

The main goal of this paper is to provide new features to the

FlexMap tool [5]. This tool is a framework to develop new

technology mapping methods. This way, it is possible to create

alternative flows to build prototypes for different synthesis

approaches. The main idea behind the FlexMap tool is the

flexibility to customize the intermediate steps of the mapping

procedure.

Currently, the FlexMap tool is only able to handle AIGER format

files. However, in order to take advantage of some optimization

algorithms implemented in other tools, we have made an

extension to handle EQN files. This way, we can preprocess

circuit descriptions using other tools to achieve technology

independent optimizations. Therefore, the optimized description

feeds the technology mapping procedures of the FlexMap tool.

After the technology mapping, it can also write an EQN file that

can be used in other commercial or academic tools, such as SIS

and ABC [1].

The differences of EQN and AIGER formats are shown in Figure

1. While the first (Figure 1.b) represent the circuit of Figure 1.a

using 15 nodes, the second (Figure 1.c) needs only 9 nodes to

describe the same circuit. This is due to the fact that the AIGER

format represents the circuit using the 2-input AND primitive on

each of its nodes. Thus, large Boolean expressions have to be

decomposed into 2-input gates. This does not happen when using

the EQN format. In this case, a node can represent a more

complex Boolean function, resulting in a netlist of cells.

The remaining of this paper is organized as follows: Section 2

addresses some important concepts to help the understanding of

this paper. Our approach is introduced in section 3. Results are

presented in section 4. Finally, we present some conclusions and

future works.

Figure 1. Examples of AIGER (b) and EQN (c) descriptions

from an IC design (a).

2. BACKGROUND
This section presents some concepts for a better understanding of

this paper.

2.1 Technology Mapping
The technology mapping is a step applied into the logic synthesis

process. This step consists on finding a set of interconnected logic

cells to implement a given logic circuit, minimizing a given

objective function. The technology mapping procedure can be

divided into three steps: decomposition, matching and covering.

The first stage aims to prepare the data structure for the mapping

procedure. Thus, it usually generates a circuit representation using

a specialized graph that often accepts a very small set of logic

gates primitives. The matching procedure has to check

equivalence between sub-graphs and cells of a library using

Boolean/structural algorithms. This process will probably result in

a set of matched sub-graphs where each sub-graph may overlap

other sub-graph(s). In order to find a set of sub-graphs that

minimizes an objective function, a covering algorithm is applied.

It defines the set of cells that will be used to implement the circuit.

2.2 Factorization
Factorization is an operation that can be applied either in a single

or in multiple Boolean expressions [4]. It tries to minimize the

number of literals of Boolean expressions leading to area

reduction [3]. Factorization algorithms are usually applied on

two-level circuits that can be represented through sum of products

(SOP). At the end of the process, a multilevel expression is

achieved with a reduced number of literals. The factorization idea

can also be applied on multiple Boolean expressions, aiming to

find the best divisor expression that is common for more than one

expression. It results in logic sharing which will lead to area

reduction.

2.3 Functional Decomposition
The functional decomposition consists in to break a complex

function into a smaller network in such a way that the original

system's behavior keep up the same. This way, some constraints

are satisfied and some objectives are optimized [2]. A given

function F can be decomposed into two sub-functions G and H in

such a way that the G + H is Boolean equivalent to the original

function F. Currently, this kind of methodology has been used to

synthetize circuits that have to be mapped to fit a Field-

Programmable Gate Array (FPGA).

3. PROPOSED EXTENSION
The FlexMap tool has focused on technology mapping. The main

goal of this tool is to provide a flexible environment to setup a

new mapping flow without using any extra programming. The tool

has some methodologies to map circuits to a library using

different techniques.

One of the main problems of this tool is related to the circuit

representation. At the beginning, it was only taking AIGER files

as input. As we have seen in Figure 1, this format may

compromise the structural representation of the circuit because it

is limited to inverters and 2-input AND gates representation. It

means that any previously mapped circuit would have a

completely different structure when represented with an AIG

graph. In some cases, in order to be able to use some iterative

mapping approach, it is necessary to preserve the netlist structure.

To fill this gap, we have proposed an extension to the tool. We are

considering that it should have another possibility to read circuit

netlists. One of the formats that are suitable to this is the EQN.

Considering this possibility we can add new iterative features to

the tool. Therefore, it can handle previously mapped circuits, even

for other synthesis tools, and provide some iterative methodology

to refine the solution. Furthermore, it is also able to write an EQN

file to represent the structure achieved by the FlexMap tool.

The possibility to handle circuits described in EQN format allows

to apply some steps of preprocessing and post-processing. Several

approaches in the literature [8] [10] shows that a preprocessing

step results in more optimized netlist circuits. In this sense, the

FlexMap tool is able to make use of preprocessing methods of

other synthesis tools, such as ABC and SIS.

When regarding post-processing steps, the FlexMap will be able

to apply iterative methodologies in mapped circuits, using

algorithms and techniques available in any other synthesis tool.

Therefore, the proposed extension enables to refine the achieved

solution until it meets the constraints of an objective function.

Some approaches in the literature explore this idea, as the one

described in [9].

aag 14 5 0 1 9

2

4

6

8

10

29

12 2 4

14 23 25

16 9 11

18 9 10

20 13 15

22 6 9

24 7 8

26 17 19

28 20 26

INORDER = pi_2 pi_4 pi_6 pi_8 pi_10;

OUTORDER = po_21;

po_21 = ![20];

N1 = pi_2 * pi_4;

N2 = (pi_6 * pi_8) + ((!pi_6) * (!pi_8));

N3 = (!(![N1] * ![N2])) + ((!pi_8) + pi_10);

(a)

(b) (c)

(a)

All these optimizations are possible because the EQN format

describes a logical function through Boolean equations. This way,

it generates a description without change the circuit structure.

Thus, it is able to achieve different decompositions for a given

circuit, which will result in a better utilization of the available

cells in a given library when composing the final circuit.

Therefore, it is possible to deliver better mapping solutions. The

following figure illustrates two possible descriptions using EQN

format from a circuit described in AIGER format. Figure 2.a

shows a structural representation of an AIG of the circuit

illustrated in Figure 1.a. Figures 2.b and 2.c represent possible

descriptions in EQN format from the AIGER format

representation.

Figure 2. Possible descriptions using EQN format (b and c) to

a circuit represented in AIG structure (a).

4. RESULTS
Some experiments were done in order to demonstrate that is

possible to achieve different mapping with the use of the

developed extension. The mapping strategy used in FlexMap tool

for the logic-covering step is based on Simulated Anneling

algorithm. The mapping method is focused on the optimization of

circuit area using the cut-k algorithm [13] with k=3. This way,

several decompositions methods were applied on the set of circuit

from Microelectronics Center of North Carolina (MCNC)

benchmark suite. In order to get mapped, the circuit descriptions

were used as input to the FlexMap tool.

Table 1 shows the results in terms of number of elements (cells)

necessary to map each circuit considering its initial

decomposition. In order to compare the impact of preprocessing

step, we performed the same SIS decomposition methods

described in [6]. Similarly, to evaluate the initial decomposition

quality, three different methods of decomposition from ABC tool

were used. These methods are focused on decomposing the initial

description aims to decrease the circuit area (resyn and resyn2

command).

The Circuit column from Table 1 introduces the names of circuits

from MCNC benchmark used on this experiment. The AIGER

column shows the mapping result starting from the AIG

description of the circuit. The EQN column refers to the mapping

result using only decomposition based in logic gates primitives,

such as AND-2, OR-2 and inverters. SIS-1, SIS-2 and SIS-3

columns refer to the decomposed circuits in SIS tool making use

of the methods seen in [6]. ABC-1, ABC-2 and ABC-3 show the

results obtained through decomposition methods present in ABC

tool. Finally, the Kong column describes the results obtained by

Kong in [6].

The results show that our proposed approach was able to explore

different mapping solutions. The optimizations percentage on the

different decompositions from the same mapping method reached

up to 50% of improvement. Also, it is possible to verify, when

comparing to the Kong approach, that decomposition methods

from ABC tool deliver better results than decomposition methods

from SIS tool if preprocessing and post-processing are available

to use.

5. CONCLUSIONS AND FUTURE WORKS
This paper presented an extension to the FlexMap tool. This

extension aims to increase the functionality, usability and

compatibility of the FlexMap. With the use of this extension, it is

possible to use circuits described in EQN format as inputs. This

format allows representing the circuit without any changes to the

original structure. This way, the new extension allows exploring

different initial decomposition from an IC. In order to

demonstrate the functionality of the proposed extension, several

experiments were carried using different decompositions methods.

The obtained results were better than the ones presented by Kong

in [6], even using the same mapping methods available in SIS.

Thus, the main goal of this experiments aims to demonstrate the

possibility of explore different mapping solutions from an initial

decompositions of the circuit. As future works, it is intend to

develop new functionalities able to improve the mapping

iteratively.

6. REFERENCES
[1] ABC - A System for Sequential Synthesis and Verification.

Berkeley Logic Synthesis and Verification Group. [Online].

Available in http://www.eecs.berkeley.edu/~alanmi/abc/.

[2] Bertacco, V.; Damiani, M., "The disjunctive decomposition
of logic functions," Computer-Aided Design, 1997. Digest of

Technical Papers., 1997 IEEE/ACM International

Conference on , vol., no., pp.78,82, 9-13 Nov. 1997.

[3] Brayton, R. K.; "Factoring logic functions," IBM Journal of
Research and Development, vol.31, no.2, pp.187,198, March

1987.

[4] Brayton, R.K.; Rudell, R.; Sangiovanni-Vincentelli, A.;
Wang, A.R., "MIS: A Multiple-Level Logic Optimization

System," Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on , vol.6, no.6, pp.1062,1081,

November 1987.

[5] FlexMap: A new Framework for Technology Mapping.
Online. http://inf.ufpel.edu.br/gaci/?page_id=553.

[6] Kong, K; Shang, Y; Lu, R., "An Optimized Majority Logic
Synthesis Methodology for Quantum-Dot Cellular

INORDER = pi_2 pi_4 pi_6 pi_8 pi_10;

OUTORDER = po_24;

[12] = (!(pi_8)) * pi_10;

[14] = pi_2 * pi_4;

[16] = (!(pi_6)) * pi_8;

[18] = pi_6 * (!(pi_10));

[20] = ![12] * ![14];

[22] = ![16] * ![18];

po_24 = ![20] + ![22];

(b)

INORDER = pi_2 pi_4 pi_6 pi_8 pi_10;

OUTORDER = po_20;

[12] = !(pi_2 * pi_4);

[14] = !((!pi_6 * pi_8) + (pi_6 * !pi_8));

[16] = (!pi_8 * pi_10) + (pi_8 * !pi_10);

[18] = !([14] * [12]);

po_20 = [16] + [18];

(c)

Automata," Nanotechnology, IEEE Transactions on , vol.9,

no.2, pp.170,183, March 2010.

[7] F. S. Marques , L. S. da Rosa Jr. , R. P. Ribas , S. S.
Sapatnekar , A. I. Reis, DAG based library-free technology

mapping, Proceedings of the 17th ACM Great Lakes

symposium on VLSI, March 11-13, 2007, Stresa-Lago

Maggiore, Italy.

[8] Mishchenko, A.; Brayton, R.; Chatterjee, S., "Boolean
factoring and decomposition of logic networks," Computer-

Aided Design, 2008. ICCAD 2008. IEEE/ACM International

Conference on , vol., no., pp.38,44, 10-13 Nov. 2008.

[9] Mishchenko, A.; Chatterjee, S.; Brayton, R.; Wang, X.; Kam,
T., "Technology mapping with Boolean matching, supergates

and choices". ERL Technical Report, EECS Dept., UC

Berkeley, March 2005.

[10] Rudell, R. L.; Bartlett, K. A.; Brayton, R. K.; Hachtel, G. D.;
Jacoby, R. M.; Morrison, C. R.; Sangiovanni-Vincentelli, A.;

Wang, A., "Multi-level logic minimization using implicit

don't cares," Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on , vol.7, no.6,

pp.723,740, Jun 1988.

[11] SIS - Synthesis of both synchronous and asynchronous
sequential circuits. Online. Available in:

http://embedded.eecs.berkeley.edu/pubs/downloads/sis/.

[12] Ziesemer, A.; Lazzar, C., "Transistor level automatic layout
generator for non-complementary CMOS cells," Very Large

Scale Integration, 2007. VLSI - SoC 2007. IFIP International

Conference on , vol., no., pp.116,121, 15-17 Oct. 2007.

[13] Cong, J.; Wu, C.; Ding, Y., “Cut ranking and pruning:
Enabling a general and efficient FPGA mapping solution,”

Proc. FPGA `99, pp.29-36.

Table 1. Evaluation considering area for the MCNC benchmarks ICs using different initial decompositions.

Circuit AIGER EQN SIS-1 SIS-2 SIS-3 ABC-1 ABC-2 ABC-3 Kong

9symml 109 118 126 217 28 110 109 114 70

alu2 342 362 629 629 233 227 347 208 447

apex6 387 419 661 661 366 268 388 363 820

c8 139 144 259 259 66 47 138 51 140

cc 32 32 43 62 22 23 32 26 51

cht 170 180 307 307 79 59 171 82 129

cm150a 16 16 38 76 22 24 16 23 66

cm162a 25 24 34 52 19 15 24 18 55

cm163a 24 25 37 50 16 13 24 17 55

cu 34 34 43 66 27 25 34 25 61

example2 183 188 326 326 143 119 180 134 310

frg1 350 368 659 659 233 250 349 231 166

frg2 957 1113 1791 1791 446 426 963 361 715

i1 22 22 20 34 14 21 22 24 48

i2 150 153 232 232 121 142 150 144 209

k2 1313 1466 2289 2289 995 1350 1310 793 1520

lal 81 81 84 142 48 36 82 39 114

ldd 72 72 80 112 35 41 69 45 91

mux 67 70 84 123 32 61 67 23 58

pcle 24 24 31 62 24 16 24 26 79

pcler8 51 53 48 70 32 28 47 40 95

pm1 31 31 37 60 22 16 31 19 51

sct 87 89 95 152 42 89 89 31 86

term1 358 376 676 676 122 112 357 75 156

ttt2 280 294 508 508 97 85 281 78 197

unreg 48 48 59 112 50 28 48 63 117

vda 606 642 1020 1020 473 391 609 429 842

x1 838 915 1571 1571 364 841 841 167 359

x2 31 31 35 57 19 17 33 22 112

Total 6827 7390 11822 12375 4190 4880 6835 3671 7486

Ratio 1,097 1,013 0,633 0,605 1,787 1,534 1,095 2,039

Optimized 8,803 1,282 -57,921 -65,309 44,029 34,812 8,696 50,962

