
Simulation of Protocol Stacks for Internet of Things
 João Paulo Andrade Lima
 Federal University of Sergipe

Av. Marechal Rondon, s/n Jardim
Rosa Elze

+55 (79) 2105-6600
dm.joaopaulo@gmail.com

 Diego Assis Siqueira Gois
Federal University of Sergipe

Av. Marechal Rondon, s/n Jardim
Rosa Elze

+55 (79) 2105-6600
diego.se.ita@gmail.com

 Admilson de Ribamar Lima
Ribeiro

Federal University of Sergipe
Av. Marechal Rondon, s/n Jardim

Rosa Elze
+55 (79) 2105-6600
admilson@ufs.br

ABSTRACT
Looking across this growing on the Internet of Things scenario,
the fact that it is an expansion area, recently, poorly studied and
documented; and the need to have results as a basis for study and
future work This work shows the simulation of the
communication stack uIP using the IPv6 protocol and the Rime
communication stack in the context of IoT, using the COOJA
simulator, which is included in Contiki system. As well aims to
publish the results in the academy aiming to provide a didactic
basis for the study and future research in the area in question.

Categories and Subject Descriptors
I.6.0 [Simulation and Modeling]: General.

General Terms
Documentation, Performance, Measurement.

Keywords
Internet of Things; Contiki; COOJA; discrete simulation.

1. INTRODUCTION
Imagine the existence of a network that would make all our
devices cooperate in every moment, to talk spontaneously among
themselves and with the rest of the world, and together compose a
kind of virtual single computer - the sum of their intelligence and
knowledge [7]. This technological advancement in wireless
scenario has reached the physical world with the integration of
network sensors and the incorporation of communication
technology in everyday life objects. This idea of ascension of the
Internet was invented by the founder of the MIT Auto-ID Center,
Kevin Ashton in 1992 [1] and was called the Internet of Things
(IoT).

However, the IoT is characterized by the insertion of daily objects
on the Internet, and the problems relating to this are the limited
storage capacity, processing and power of such objects. As a
possible solution, Adam Dunkels presented [2] an implementation
of the communication stack TCP/IP for integrated ultra-low power

processing devices. For this feat, the implementation of uIP (as it
became known such stack) is designed to have only the minimum
set of features required for the operation of the TCP/IP stack.

Alternatively, Adam Dunkels also implemented the layered Rime
communication stack [3], which simplifies the implementation
and complexity of communication protocols. The abstraction
layers of this stack are extremely simple both in terms of interface
and implementation, and are combined to form powerful high-
level abstractions.

Analyzing across this growing scenario about the Internet of
Things, the fact that it is an expanding area, recently, little studied
and documented. And knowing the work [2] that presents the
operating system Contiki and the knowledge about COOJA
simulator, included in this, which allows the simulation of these
motes IoT both at the network level, at the operating system level,
and the set of the machine instruction level; and has the
practicality of allowing the use of the code implemented in
simulator to the physical mote without changing.

Besides the world of [6] where the authors performed several
simulations of computer networks using a special simulator, and
published the results in the academy by serving as a basis for
future study. This paper performs the simulation of uIP and Rime
communication stack using the IPv6 protocol and COOJA
simulator, aiming to publish the results in the academy to provide
the didactic baseline study and future research in the area in
question.

TCP, UDP, REST and RIME stack (via ABC module) protocols
were simulated plus a small HELLO WORLD to demonstrate the
operation of the simulator and the Contiki operating system
running, all these simulations were performed with the use of
IPv6. This paper will detail only the UDP protocol due to the
limit imposed on the paper size.

This work was divided into several chapters, the first chapter is
introduction. The next chapter is related work in the area studied.
The chapter three exposes the simulation planning and the chapter
four presents the details of the UDP simulation which is the focus
of this work.

Chapter five presents the results and holds a discussion about
them. Already the chapter six shows the conclusion and proposed
future work.

2. RELATED WORK
A relevant work in this area is the Michael Kirsche work [4],
where the author proposes a hybrid simulation environment that
aims to perform Internet of Things studies. The main goal is to
simulate correctly the mote in system-level and in network-level at

the same time providing a simulation that lets you test your
application protocols during pre-deployment, given that the
COOJA [5] and OMNeT++ [9] simulators have strengths in their
respective areas, but do not cover the mote in the system-level and
network-leave at the same time, the author proposed this
environment to reduce the gap between research and practice
development.

Otherwise, the work [5] is also related to the central theme of this
paper, since it presents the COOJA simulator to simulate a
wireless sensor network. This simulator was chosen for this work,
mainly due to its cross-level simulation, enabling the
simultaneous simulation at various levels of the system.

Knowing that RPL (IPv6 Routing Protocol for Low Power and
Lossy Networks) is the IETF standard candidate for IPv6 routing
in low-power wireless sensor network, Tsiftes, Eriksson and
Dunkels presents the first results that were obtained with the
ContikiRPL implementation [8]. The COntikiRPL is an
implementation of the RPL routing protocol for low power and
lossy networks. However, according to the authors, the studies
about RPL proved that practical experience of RPL
implementations on systems with limited resources, similar to the
IoT objects, has been lacking. Therefore, the authors have
developed the RPL within the µIP stack, running experiments
both in a low power wireless network as in the simulation.

As can be seen, no work to simulate completely the µIP stack with
the IPv6 protocol was found, thus showing the necessity of
simulation and publishing the results in the academy to serve a
didactic basis for the study and development of new applications.

3. SIMULATION PLANNING
As main materials used were the Contiki operating system with
the simulator COOJA, available in the same, the simulations were
performed in the virtual mote TmoteSky offered by COOJA.

The first step was to make the assembly the Contiki environment.
Once the environment is ready to work, a survey of key metrics
for the simulation of IoT motes was done, they are:

• Number of sent packets;

• Number of received packets;

• Number of dropped packets;

• Number of retransmitted packets;

• RSSI – Indicator of the intensity of the signal received;

And for the Rime communication stack, outside the above
mentioned:

• The CPU consumption;

• The consumption used by each LED in every moment of
the simulation;

• The consumption to transmit and receive packets.

Besides the metrics, was chosen a protocol for each
communication stack to perform the simulations:

• The simple UDP, UDP, TCP and REST protocol for the
uIP stack;

• The communication module ABC (Anonymous best-
effort local area broadcast) to the Rime stack;

After that, the MAKE tool was used to assist in compiling
the codes of the Contiki simulations.

4. SIMULATIONS
With the intention to compare the results, several simulations for
each protocol with applying some changes were made in the
scenarios, they are:

• Transmission success rate (TX);

• Receipt success rate (RX);

• Motes arrangement (random or arranged manually).

The transmission and receipt success rate specifies the package
chance being delivered or received by a particular mote, this rate
is of fundamental importance in protocols simulations that need to
establish a connection like the TCP and REST, because there are
not handshake if the sent packets not arrive in the other particular
mote. As the TX and RX, the arrangement of the motes is also
critical in simulations, because if overcome certain limit, set to
100 meters, is not possible for communication.

Both TCP and REST protocol were simulated using a client-
server system, where they were placed clients and one server
trying to respond to all customers requests, these requests were
not always answered successfully, either by change the
transmission or receipt success rate (by a large distance between
the motes), for having drop packets while trying to establish a
connection form client to server or due the competition to
multiple clients sending packets simultaneously to a single server,
wich is unable to answer all clients simultaneously.

Already in the UDP and ABC module (Rime stack) protocols
were made broadcasts in the network so that it was not necessary
to answer requests a server, in this case all motes send packets to
the other and all have listening on, so it is possible to remove
metrics without the use server. In the simulation of these protocols
the transmission and receipt success rate variation was less
decisive than in the case of protocols that require a connection
establishment, but the motes arrangement was as decisive as in
TCP and REST.

For the UDP protocol, there are two distinct ways to simulate it,
using the simple UDP API or UDP API. The simple UDP API is
implemented by the Contiki and provides functions that facilitate
the simulation of this protocol, bacause is not easy to work with
UDP in Contiki. In this paper, simulations were performed with
both API using simple UDP and UDP.

Even with a difficulty degree a bit higher, we will treat about the
Contiki UDP API simulation. To perform this simulation first
reviewed for the compilation rules necessary for the UDP
implementation, these rules are:

• CONTIKI=/home/user/contiki

• Include $(CONTIKI)/Makefile.include

• WITH_UIP6=1: Command that enables the use of the
uIP stack, in this case with IPv6.

• UIP_CONF_IPV6=1: It is a flag used to enable IPv6
because by default the Contiki uses IPv4.

• UIP_CONF_IPV6_CHECKS=1: It is also a flag, but he
is responsible for ensuring that packets arriving to the
mote are correctly formed.

• UIP_STATISTICS=1: It is responsible for capturing the
metrics of incoming packets sent and lost.

With the Makefile file ready was sought to implement the
execution code of the mote. Was first added to the core libraries
Contiki: "contiki.h" and "contiki-net.h", then the standard output:
<stdio.h> and lastly the "cc2420.h" which includes functions to
capture RSSI floor values and last packet received RSSI.

As this simulation sends a broadcast to all motes using the UDP
API, you should first use the udp_broadcast_new function to
create a new connection UDP broadcast. Created the connection,
only the uIP stack can choose when to send packets, however
tcpip_poll_udp function forces the stack to capture the specified
connection, thus allowing the sending of packets at the desired
time.

In this simulation, after the stack choosing the connection, it is
used the uip_send function to send a string via broadcast
connection. After each sent, print up the metrics of uip_stat
structure and presents the RSSI values with the functions:

• cc2420_rssi(): Reading RSSI floor;

• cc2420_last_rssi: RSSI of the last packet received.

5. RESULTS AND DISCUSSION
The simulation of UDP API observed the UDP packets in
environments with fixed and random arrangement of motes in the
environment with the random arrangement, the UDP packets of
analyzed 10 motes are shown in Figure 1.

Figure 1. Histogram of UDP packets sent and received with
motes scattered randomly by COOJA.

Note that this graph confirms the relationship of the randomness
of the motes with the received packets, since all devices have
linearity in the quantity of packets sent, but a variation in relation
to those. This explains the fact of the motes 4, 5 and 7 have
received fewer packets, since they were farther apart from the rest.

To try to confront these values, was built an environment with
fixed arrangement, where all motes are in the transmission area of
all others. With the environment ready was obtained the graph of
Figure 2.

Figure 2. Histogram of UDP packets sent and received with
motes at fixed points.

Using this plot can confirm the dependence of the arrangement of
motes, realize that occurs a permanence of packets received and
sent around a value, showing that all are participating equitably in
this simulation of broadcast.

Another point that was discussed in this simulation was the
relationship of the motes with TX and RX, Simulating them in
scenarios with motes arranged randomly and arranged in fixed
points, to observe the impact of changes in the rate of success.
Following what was planned, was altered the TX and RX to 50%
in the environment with the random arrangement and were
obtained the values of the figure 3.

Figure 3. Histogram of UDP packets sent and received with
motes scattered randomly by COOJA with TX and RX at

50%.

Note that occurs again a fixity in the amount of packets sent while
arises an alternation in the received packets. The amount of
received packets also decreases due to reduced success rate.

In the same line of thought, simulated an environment with fixed
arrangement with a reduction of 50% success rate. The values
obtained are shown in Figure 4.

Figure 4. Histogram of UDP packets sent and received with
motes at fixed points and TX and RX at 50%.

As was expected, the simulation obtained similar values to the
histogram of Figure 2, but with the decrease in the amount of
packets received due to reduction success rate.

6. CONCLUSION AND FUTURE WORK
The event-based programming required at the Contiki is not
simple, in addition, many of the settings needed to run the
simulation are not available in the documentation, for example,
have the codes described in the makefile.

Another problem encountered was in relation to the Contiki
libraries, which sometimes caused problems because their
functions do not work as they should, as an example, we have the
uip_statics function. After extensive analysis of the uIP.h library it
was verified that there was an error in this, where #if
UIP_STATISTICS = 1 is found, it is necessary to exchange for
just #if UIP_STATISTICS and at the end of the definition just let
the #endif.

Despite the difficulties encountered due to be an area that there is
little material available for consultation and a rather poor
documentation, satisfactory results were obtained in the
simulations. These simulations show that the protocols also
depend on the environment in which the motes are inserted.

The simulation performed in this paper aimed to show that it is
possible to implement in real motes the Internet of Things. Thus,
future work proposed in this paper, is the realization of the
simulation of these protocols in real motes, observe their behavior
and compare the results obtained by the simulation with the
results obtained by real motes.

7. REFERENCES
[1] ASHTON, K. That ‘Internet of Things’ Thing . Online

RFID Journal. Published in 2009. Available in:
<http://www.itrco.jp/libraries/RFIDjournal-
That%20Internet%20of%20Things%20Thing.pdf>.
Acessado em 23 de setembro de 2013.

[2] DUNKELS, A. Full TCP/IP for 8-bit architectures. In:
Proceedings of The First International Conference on Mobile
Systems, Applications, and Services (MOBISYS 2003) .May
2003.

[3] DUNKELS, A. Rime - a lightweight layered
communication stack for sensor networks. In: European
Conference on Wireless Sensor Networks (EWSN). January
2007, Delft, The Netherlands.

[4] KIRSCHE, M. Simulating the Internet of Things in a
Hybrid Way .Proceedings of the Networked Systems
(NetSys) 2013 PhD Forum. Published in March 2013.
Available in: <https://www-rnks.informatik.tu
cottbus.de/content/unrestricted/staff/mk/Publications/NetSys
_2013-PhD_ForumKirsche.pdf>.

[5] ÖSTERLIND, F.; DUNKELS, A.; ERIKSSON, J.; FINNE,
N.; VOIGT, T. Cross-Level Sensor Network Simulation
with Cooja. Proceedings of the First IEEE International
Workshop on Practical Issues in Building Sensor Network
Applications. (SenseApp 2006), Tampa, FL, USA, 14
November 2006.

[6] PETERSON, L.L., DAVIE, S. B. Computer Networks: A
System Approach. 2003. Third Edition: A Systems
Approach, 3rd Edition.

[7] SUNDMAEKER, H. Vision and Challenges for Realising
the Internet of Things. 2010.

[8] TSIFTES, N.; ERIKSSON, J.; DUNKELS A. Low-power
wireless IPv6 routing with ContikiRPL. Proceedings of the
9th ACM/IEEE International Conference on Information
Processing in Sensor Networks. April 12-16, 2010,
Stockholm, Sweden [doi>10.1145/1791212.1791277].

[9] VARGA, A.; HORNING, R. “An Overview of the
OMNeT++ Simulation Environment”. Proceedings of the
First Conference on Simulation Tools and Techniques for
Communications, Networks and Systems. (Simutools 2008).
ICST, 2008, PP. 1-10.

