
Topological Aspects of Non-Series-Parallel Transistors

Networks
Maicon Schneider Cardoso, Regis Zanandrea, Renato Souza de Souza,

Leomar Soares da Rosa Jr., Felipe de Souza Marques

Group of Architecture and Integrated Circuits
Federal University of Pelotas
Pelotas, Rio Grande do Sul

{mscardoso, rzanandrea, rsdsouza, leomarjr, felipem}@inf.ufpel.edu.br

ABSTRACT

Considering the number of transistors necessary to implement

Boolean functions, graph-based approaches have demonstrated

relevant results lately. On the other hand, by decreasing the

transistor count via non-series-parallel networks, some new

aspects are introduced, impacting not only on the classical

placement algorithms, but also on the layout itself. This paper

proposes a flow to verify topological aspects of non-series-parallel

networks in order to guide the cell layout generation. Results

performed over intensively used benchmarks demonstrate that a

relevant part of the non-series-parallel set has singular new

topological characteristics: non-planarity and different number of

transistors between the logic plans.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids – Layout.

General Terms

Algorithms, Design.

Keywords

Non-series-parallel networks; logic topology; planarity; duality;

placement

1. INTRODUCTION
Graph-based logic minimization procedures have gained

relevance recently [1,2]. Through the path sharing in the logic

network, these methods could reach several optimizations in terms

of number of transistors for a large set of functions when

compared to other Boolean factorization methodologies [3,4].

However, these graph-based methodologies can produce

arrangements with some new aspects, such non-planarity and non-

duality, affecting some of the classical algorithms that have been

used for the physical synthesis of a cell.

The placement procedure is one of the most important methods on

the VLSI design flow. It has directly impacts on cell sizing and in

routing complexity. For that reason, many algorithms try to find

an optimized and quickly solution since these two aspects are

fundamental to any Electronic Design Automation (EDA) tool.

This paper introduces a flow to verify topological aspects of non-

series-parallel networks, since it has directly impacts on

placement, as described before. Starting from a Boolean function,

we generate the two optimized logic plans by using a state-of-art

graph-based procedure [1], which is followed by the arrangement

topology test. This way, it provides useful information about those

impacts in widely used Boolean functions. So, allows us to

evaluate what can be done to overcome these peculiar aspects

inherent to non-series-parallel cells.

The reminder of this paper is organized as follows. Section II

review some important concepts about logic networks and graph

theory necessarily to the fully comprehension of this paper;

section III introduces the motivation for the investigation of

topological aspects in transistor networks and the classical

placement methodologies; section IV presents the methodology

proposed; section V shows the obtained results; finally, section VI

presents the conclusions of this paper and the proposed future

works.

2. PRELIMINARIES
This section reviews and presents some basic concepts and

algorithms necessary to the fully understanding of this paper.

2.1 Logic Networks

2.1.1 Logic Plans
A CMOS gate is composed by two logic plans: the pull-up

network (PUP) and pull-down-network (PDW). The PUP is

composed by PMOS transistors and its function is to provide a

connection between the output and VDD. Similarly to that, the

PDW is composed by NMOS transistors and its function is to

connect the output to VSS.

Logic plans can be represented by graphs where each transistor is

an edge and each node is a vertex on the structure. It allows to

apply several algorithms to optimize the logic network [1,2] or the

physical layout [5].

2.1.2 Series-Parallel Networks
A SP transistor network is a kind of arrangement where all

switches have either series or parallel connections. Therefore,

there is no bridge connection [4].

Figure 1 (a) shows a SP network that implements the following

Equation 1.

 f = a.b + a.c.e + d.e + b.c.d (1)

2.1.3 Non-Series-Parallel Networks
A transistor network is NSP if, and only if, there is at least one

bridge connection between its components [4].

Figure 1 (b) illustrates a NSP network that implements Equation

1. The transistors pointed by dashed lines are in bridge

configuration. It is notable the optimization in terms of number of

transistors to represent the Equation 1 obtained by this

arrangement.

b

d

a

e

a c b c

b

a

b

c

a

c

e

d

f

a b

d e

c

a

b

d

e

c
f

(a) (b)
Figure 1. Networks implementing Equation 1. (a) Series-

parallel network. (b) Non-series-parallel network.

2.2 Graph Theory

2.2.1 Planarity

A graph is said to be embeddable in the plane, or planar, if it can

be drawn in the plane so that its edges intersect only at their ends.

For logic networks, only NSP arrangements can present non-

planarity topology.

There are several algorithms to perform a planarity check in a

graph, but, basically, with different time complexity. One of these

methodologies is the Boyer-Myrvold algorithm [7], a state-of-art

way to verify planarity through the edge addition technique.

2.2.2 Duality

It is a property directly linked to the planarity. Considering a

planar graph G, a dual graph G* of it is constructed as follow:

firstly, for every face of G, a vertex is created in G*. Then, edges

connecting the vertices in G* are built by crossing each edge in G,

in which the edge label is preserved. Figure 2 illustrates a graph G

(edges represented by a continuous line and black vertices) and its

dual graph G* (dashed edges and white vertices).

c
a d

b e

a

b

d

e

c

(b)(a)

c
a d

b e

(b)

d

e

a

b
c

Figure 2. A graph and its dual.

2.3 Euler Path and Euler Circuit

An Euler path is defined as the path that travels the graph through

every edge exactly once. In case of same starting and ending

vertices, this path is defined as Euler circuit.

Euler's theorem [7] describes the conditions necessary to a graph

be Eulerian, i.e. whether it admits Euler paths or Euler circuits. It

can be summarized by the following corollary: if there are three or

more odd degree vertices in the graph, then it is not Eulerian.

In physical synthesis scenario, Euler paths are extremely useful: if

a plan of a logic network has an Eulerian path, then the diffusion

area of this plan will be totally shared by its transistors, i.e. there

is no gap in the diffusion line.

3. PROBLEM DESCRIPTION
Despite the notable optimizations concerning the number of

transistors, NSP introduces a new challenge for most of placement

algorithms. This section will review some classical methods for

placement and identify some of the problematic cases occurred in

this for NSP cells.

The first formulation of placement proposed was Uehara et. al.

[5]. Introducing the concept of diffusion sharing between the

transistors and the linear-matrix layout style, the algorithm

consists to find an Euler path in a representative graph of the

arrangement. This way, is possible to reduce the layout size and

avoid diffusion gaps.

From that first paper, many others methodologies arises aiming to

cover different aspects of the logic network (layout styles,

technologies, topologies, etc.) and to decrease the time and

complexity of the placement computing. Maziasz et. at. [8]

introduces a methodology aiming the minimization of the height

of the cell considering the routing channels necessary for routing

procedure. The CLIP EAD tool [9] proposes a method to place

transistors based on Integer Linear Programming (ILP), which

provides a significant optimization for placement of 2D layout

style and for networks with a larger number of transistors. Lib

EAD tool [10] introduces the idea of clustering where the PMOS

and NMOS transistors directly connected are enclosed in subsets

of the network and each subset is placed individually. Another

EAD tool called XPRESS [11] also uses this clustering technique

to place transistors, aiming the decrease of diffusion gaps and

height of a cell for linear-matrix layout style. Cellerity [12] was

one of the first to use a Simulated Annealing technique to place

transistors, allowing the placement for 2D layouts also. Finally,

Iizuka et. al. proposes two algorithms of placement which are

considered the state-of-art nowadays [13,14]. Both techniques use

a SAT solving procedure to get the better placement of the

transistors in the cell, providing optimized solutions in a short

computing time compared to others classic methodologies and

EDA tools mentioned before.

As we can see, the algorithms described above try to cover

different aspects of the cell, and each one of them is concerned

about a particular set of constraints. This paper discusses those

that are related to the transistors arrangement topology, such as

planarity, duality and the Eulerian properties. Table 1 summarizes

these aspects for the algorithms mentioned before.

To comprehend the relation between these topological aspects and

the NSP networks, let us consider the network generated by a

state-of-art algorithm illustrated in Figure 3. As we can see, this

NSP solution not only is non-planar but also the number of

switches between the plans is different (10 and 8 switches for

PUP and PDW, respectively). This way, methodologies that have

constraints of planarity, duality, number of transistors or those

that only accept series-parallel networks do not offer support for

NSP arrangements. It is important to notice that most of EDA

tools do not support this topology, as Table 1 shows.

b c

b c

c

b

a

b

b

!c

d

!b

!a

a

!d

bc

b

b

a

!c

a

!b

c
!a

a

f

Figure 3. A non-series-parallel and non-planar network.

This paper aims to evaluate the impacts of these topological

aspects considering common-used libraries, proposing a

methodology to create NSP transistor arrangements based on a

state-of-art algorithm to generate optimized logic networks.

Table 1. Constraints in algorithms of placement

Constraints [5] [8] [9] [10] [11] [12] [13] [14]

Series-parallel

connections
Yes Yes Yes No No No Yes No

Planarity Yes Yes Yes No No No Yes No

Duality Yes Yes Yes No No No Yes No

Equal number of

switches PUP and

PDW

Yes Yes Yes No No No Yes No

4. PROPOSED METHODOLOGY
To evaluate topological aspects of logic networks, we have to

generate several NSP arrangements for different Boolean

functions. For the past decades, many alternatives to solve the

minimization and factorization problems are proposed aiming to

optimize logic networks [2,3,4]. Recently, graph-based approach

algorithms have demonstrated that they can be an efficient way to

build optimized arrangements, becoming a valuable alternative to

the modern logic design. Kernel Finder (KF) [1] is a state-of-art

methodology that uses NSP networks to perform this optimized

transistor network generation. For this reason, we have used the

KF tool to produce transistor networks to perform our analysis.

There are many ways to construct a logic network, even using a

tool as KF. To generate the minimum arrangement produced by

KF in terms of number of switches, we proposed the Algorithm 1.

Algorithm 1 Pseudocode for Network Construction via KF

1: buildNetwork (F)

2: PUP ← kernelFinder (F)

3: PDW ← kernelFinder (!F)

4: if (isPlanar (PUP) and isPlanar (PDW)) then

5: if (PDW.n < PUP.n) then

6: PUP ← dual (PDW)

7: else then

8: PDW ← dual (PUP)

 9: end if

 10: end if

 11: return PUP ∪ PDW

 12: end

The algorithm starts building the two logic plans PDW and PUP

in lines 2 and 3 respectively. To perform this, KF computes the

plans generated by F (direct Boolean function) and !F

(complementary function). There are two possible situations: (1)

PDW and PUP are both planar or (2) at least one of them is non-

planar. Line 4 performs a planarity check for each plan through a

Boyer-Myrvold method [6]. In case of a planar arrangement, lines

5 to 10 are executed. Line 5 investigates which plan has less

transistors in the arrangement, considering that KF can generate

plans with different number of switches for F and !F. In case of

more transistors in PDW, then PUP receives the dual graph of

PDW (line 6) and vice versa (line 8). As mentioned before, the

other situation is when there is a non-planar plan. In this case, it is

not possible to generate a dual graph. Finally, line 11 returns the

full network composed by the PUP and PDW plans.

As we can see, the planarity and duality tests are already executed

in the implementation flow described for Algorithm 1. To

complete the test stage, we need to verify the number of

transistors in PUP and PDW, besides the Eulerian aspect of both

plans.

Performing these network implementation and test flows we

generate, via KF, an optimized (NSP) transistor arrangement

derived from a Boolean expression

5. RESULTS
The experiments presented in this section were made under a set

of well-known benchmarks presented in most of works referenced

in this paper. The catalog are composed by the NSP handmade

cells [15] (53 functions), Nimomya’s catalog [16] (402), the 4-

input P-class [17] (3982) and the eleven variable and ninety-nine

literals expression discussed as study case in [1] (named from here

as 11-input), which give us a total of 4438 Boolean functions.

5.1 Planarity and Duality
Table 2 summarizes the planarity and duality results. Notice that,

if the network has at least one planar plan, then it is possible to

construct the dual network from that plan.

Table 2. Planarity and duality

Benchmark

Both planar

plans / Dual

(#)

One planar

plan / Dual

(#)

Both non-

planar / Non-

dual (#)

[15] 53 0 0

11-input 1 0 0

[16] 340 14 49

[17] 3183 564 235

As we can see, for the functions [15] and for 11-input, we did not

have any occurrence of non-planarity or non-duality. However, in

[16] and [17], 12.43% and 20.07% of networks are not fully (both

plans) planar, respectively. As discussed before, in those cases is

not possible to generate dual plans, which increase the placement

complexity and even impossibilities some methodologies to deal

with this network.

5.2 Difference in the Number of Transistors
Considering the Algorithm 1, we aim to optimize the number of

transistors in the design procedure of the full network. Table 3

enumerates how many functions (relatively to the entire

benchmark) have different number of transistors (affecting the

placement methods illustrated in Table 1) considering the

minimum cell that can be created by KF.

Table 3. Functions with different number of transistors in

pull-up and pull-down plans

Set
Func.

(#)

Func.

(%)

Sum of switches

differences (#)

Average

(#)

Std. dev.

(#)

[15] 0 0 0 0 0

11-inp. 0 0 0 0 0

[16] 5 1.24 6 1.2 0.44

[17] 421 10.57 565 1.34 0.62

Table 3 shows that, in case of planarity in both plans, [15] and 11-

input, the network with minimum number of switches generated

via KF has the same number of transistor in PUP and PDW. For

[16] and [17], 1.24% and 10.57% of functions have difference in

the transistor count between PUP and PDW, with an average of

1.2 and 1.34 more transistors per plan and 0.44 and 0.62 of

standard deviation, respectively.

5.3 Eulerian Networks
The last aspect observed in this paper is the Eulerian

characteristic. It describes how many networks will produce

layouts with at least one diffusion gap, as reviewed in the section

2. Table 4 describes this characteristic.

Table 4. Eulerian networks

Set
Eulerian

(#)

Eulerian

(%)

Non-

Eulerian (#)

Non-

Eulerian (%)

[15] 38 71.70 15 28.30

11-input 1 100 0 0

[16] 211 52.49 191 47.51

[17] 1849 46.43 2133 53.57

Table 4 shows that 28.30%, 47.51% and 57.57% of the cells

implementing the set of functions [15], [16] and [17],

respectively, will have a gap, increasing the area. In addition, for

these networks, the placement algorithms need to implement a

diffusion break procedure, since this is not trivial.

6. CONCLUSIONS AND FUTURE WORKS
The paper presents some topological aspects of NSP networks.

This was made by proposing an implementation and test

methodology that creates optimized switch networks via a state-

of-art algorithm, which allows the verification of how affected the

placement algorithms with topological constraints will be dealing

with this kind of arrangement.

The results show that, for the sets [15-17] adding the 11-input, in

[16] and [17] catalogs, 12.43% and 20.07% of the networks,

respectively, are fully non-planar. It demonstrates that a relevant

set of NSP functions have singular topological aspects, which has

directly impact of some classical placement methodologies and

increase the complexity of this procedure. Also, is presented the

number of functions with different switches count between PUP

and PDW considering non-planar solutions, 1.24% and 10.57%

for [16] and [17], respectively. Finally, our results demonstrate

that a large number of cells will have gap in the diffusion area,

71.70%, 52.49% and 46.43% for [15], [16] and [17] catalogs,

respectively.

As future works we intent to investigate the classical and state-of-

art placement and routing methodologies applied to NSP networks

aiming the development of a layout estimator and an EDA tool for

arrangements without topological constraints.

7. ACKNOWLEDGMENTS
Research partially supported by Brazilian funding agencies

CAPES, CNPq and FAPERGS.

8. REFERENCES
[1] Possani, V., Callegaro, V., Reis, A., Ribas, R., Marques, F.,

Da Rosa, L. . 2015. Graph-based transistor network

generation method for supergate design. In Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 99 (Mar.

2015).

[2] Kagaris, D., et al. . 2007. A methodology for transistor-

efficient supergate design. In Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on 15, 4 (Apr. 2007),

488-492.

[3] Martins, .M., et al. 2010. Boolean factoring with multi-

objective goals. In Computer Design (ICCD), IEEE

International Conference on, (Oct. 2010), 229-234.

[4] Da Rosa, L., et al. 2009. Switch level optimization of digital

CMOS gate networks. In Quality of Electronic Design

(ISQED), (Mar. 2009), 324-329.

[5] Uehara, T., et al. 2007. Optimal layout of CMOS functional

arrays. In. Computers, IEEE Transactions on, 30, 5 (2007),

305-312. Modeling and Simulation Design. AK Peters Ltd.,

Natick, MA.

[6] Boyer, J., et al. 2004. On the cutting edge: simplified O(n)

planarity by edge addition. In Journal of Graph Algorithms

and Applications, 8, 3 (2004), 241-273.

[7] Roy, K. . 2007. Optimum Gate Ordering of CMOS Logic

Gates Using Euler Path Approach: Some Insights and

Explanations. In Journal of Computing and Information

Technology, 15, 1 (2007), 85-92.

[8] Maziasz, R., et al . 1991. Exact Width And Height

Minimization of CMOS Cells. In 28th Design Automation

Conference (Jun. 1991), 487-493.

[9] Grupta, A., et al. 2000. CLIP: integer-programming-based

optimal layout synthesis of 2D CMOS cells. In ACM

Transactions on Design Automation of Electronic Systems,

5, 3 (2000), 510-547.

[10] Hsieh, Y. . 1990. LiB: a cell layout generator. In ACM/IEEE

Conference on Design Automation (1990), 474-479.

[11] Grupta, A., et al. 1996. XPRESS: A Cell Layout Generator

with Integrated Transistor Folding. In European Design and

Test Conference (Mar. 1996), 393-400.

[12] Guruswamy, M., et al. 1997. Cellerity: a fully automatic

layout synthesis system for standard cell libraries. In Design

Automation Conference (1997), 327-332.

[13] Iizuka, T., et al. 2004. High speed layout synthesis for

minimum-width CMOS logic cells via Boolean satisfiability.

In Conference on Asia South Pacific Design Automation

(2004), 149-154.

[14] Iizuka, T., et al. . 2005. Exact Minimum-Width Transistor

Placement for Dual and Non-dual CMOS cells. In IEICE

Transactions on Fundamentals of Electronics, E88-A, 12

(2005), 3485-3491.

[15] Logics. Catalog of 53 Handmade Optimal Switch Networks.

Logic Circuit Synthesis Labs. Retrieved March 25, 2015

from Federal University of Rio Grande do Sul:

http://www.inf.ufrgs.br/logics/docman/53_NSP_Catalog.pdf.

[16] Harrison, M. . 1965. Introduction to Switching and

Automata Theory. New York, NY, USA: McGraw-Hill

(1965), 408-472.

[17] Correa, V., et al. . 2001. Classifying n-input Boolean

Functions. In 7th Workshop IBERCHIP (Mar. 2001), 58-66.

