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ABSTRACT 

Considering the number of transistors necessary to implement 

Boolean functions, graph-based approaches have demonstrated 

relevant results lately. On the other hand, by decreasing the 

transistor count via non-series-parallel networks, some new 

aspects are introduced, impacting not only on the classical 

placement algorithms, but also on the layout itself. This paper 

proposes a flow to verify topological aspects of non-series-parallel 

networks in order to guide the cell layout generation. Results 

performed over intensively used benchmarks demonstrate that a 

relevant part of the non-series-parallel set has singular new 

topological characteristics: non-planarity and different number of 

transistors between the logic plans.   

Categories and Subject Descriptors 

B.7.2 [Integrated Circuits]: Design Aids – Layout. 

General Terms 

Algorithms, Design. 

Keywords 

Non-series-parallel networks; logic topology; planarity; duality; 

placement 

1. INTRODUCTION 
Graph-based logic minimization procedures have gained 

relevance recently [1,2]. Through the path sharing in the logic 

network, these methods could reach several optimizations in terms 

of number of transistors for a large set of functions when 

compared to other Boolean factorization methodologies [3,4]. 

However, these graph-based methodologies can produce 

arrangements with some new aspects, such non-planarity and non-

duality, affecting some of the classical algorithms that have been 

used for the physical synthesis of a cell. 

The placement procedure is one of the most important methods on 

the VLSI design flow. It has directly impacts on cell sizing and in 

routing complexity. For that reason, many algorithms try to find 

an optimized and quickly solution since these two aspects are 

fundamental to any Electronic Design Automation (EDA) tool. 

This paper introduces a flow to verify topological aspects of non-

series-parallel networks, since it has directly impacts on 

placement, as described before. Starting from a Boolean function, 

we generate the two optimized logic plans by using a state-of-art 

graph-based procedure [1], which is followed by the arrangement 

topology test. This way, it provides useful information about those 

impacts in widely used Boolean functions. So, allows us to 

evaluate what can be done to overcome these peculiar aspects 

inherent to non-series-parallel cells. 

The reminder of this paper is organized as follows. Section II 

review some important concepts about logic networks and graph 

theory necessarily to the fully comprehension of this paper; 

section III introduces the motivation for the investigation of 

topological aspects in transistor networks and the classical 

placement methodologies; section IV presents the methodology 

proposed; section V shows the obtained results; finally, section VI 

presents the conclusions of this paper and the proposed future 

works. 

2. PRELIMINARIES 
This section reviews and presents some basic concepts and 

algorithms necessary to the fully understanding of this paper. 

2.1 Logic Networks 

2.1.1 Logic Plans 
A CMOS gate is composed by two logic plans: the pull-up 

network (PUP) and pull-down-network (PDW). The PUP is 

composed by PMOS transistors and its function is to provide a 

connection between the output and VDD. Similarly to that, the 

PDW is composed by NMOS transistors and its function is to 

connect the output to VSS. 

Logic plans can be represented by graphs where each transistor is 

an edge and each node is a vertex on the structure. It allows to 

apply several algorithms to optimize the logic network [1,2] or the 

physical layout [5]. 

2.1.2 Series-Parallel Networks 
A SP transistor network is a kind of arrangement where all 

switches have either series or parallel connections. Therefore, 

there is no bridge connection [4]. 

Figure 1 (a) shows a SP network that implements the following 

Equation 1. 

                               f  = a.b + a.c.e + d.e + b.c.d                         (1) 

2.1.3 Non-Series-Parallel Networks 
A transistor network is NSP if, and only if, there is at least one 

bridge connection between its components [4]. 

Figure 1 (b) illustrates a NSP network that implements Equation 

1. The transistors pointed by dashed lines are in bridge 

configuration. It is notable the optimization in terms of number of 

transistors to represent the Equation 1 obtained by this 

arrangement. 
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Figure 1. Networks implementing Equation 1. (a) Series-

parallel network. (b) Non-series-parallel network. 

2.2 Graph Theory 

2.2.1 Planarity 

A graph is said to be embeddable in the plane, or planar, if it can 

be drawn in the plane so that its edges intersect only at their ends. 

For logic networks, only NSP arrangements can present non-

planarity topology. 

There are several algorithms to perform a planarity check in a 

graph, but, basically, with different time complexity. One of these 

methodologies is the Boyer-Myrvold algorithm [7], a state-of-art 

way to verify planarity through the edge addition technique. 

2.2.2 Duality 

It is a property directly linked to the planarity. Considering a 

planar graph G, a dual graph G* of it is constructed as follow: 

firstly, for every face of G, a vertex is created in G*. Then, edges 

connecting the vertices in G* are built by crossing each edge in G, 

in which the edge label is preserved. Figure 2 illustrates a graph G 

(edges represented by a continuous line and black vertices) and its 

dual graph G* (dashed edges and white vertices). 
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Figure 2. A graph and its dual. 

2.3 Euler Path and Euler Circuit 

An Euler path is defined as the path that travels the graph through 

every edge exactly once. In case of same starting and ending 

vertices, this path is defined as Euler circuit. 

Euler's theorem [7] describes the conditions necessary to a graph 

be Eulerian, i.e. whether it admits Euler paths or Euler circuits. It 

can be summarized by the following corollary: if there are three or 

more odd degree vertices in the graph, then it is not Eulerian. 

In physical synthesis scenario, Euler paths are extremely useful: if 

a plan of a logic network has an Eulerian path, then the diffusion 

area of this plan will be totally shared by its transistors, i.e. there 

is no gap in the diffusion line. 

3. PROBLEM DESCRIPTION 
Despite the notable optimizations concerning the number of 

transistors, NSP introduces a new challenge for most of placement 

algorithms. This section will review some classical methods for 

placement and identify some of the problematic cases occurred in 

this for NSP cells. 

The first formulation of placement proposed was Uehara et. al. 

[5]. Introducing the concept of diffusion sharing between the 

transistors and the linear-matrix layout style, the algorithm 

consists to find an Euler path in a representative graph of the 

arrangement. This way, is possible to reduce the layout size and 

avoid diffusion gaps. 

From that first paper, many others methodologies arises aiming to 

cover different aspects of the logic network (layout styles, 

technologies, topologies, etc.) and to decrease the time and 

complexity of the placement computing. Maziasz et. at. [8] 

introduces a methodology aiming the minimization of the height 

of the cell considering the routing channels necessary for routing 

procedure. The CLIP EAD tool [9] proposes a method to place 

transistors based on Integer Linear Programming (ILP), which 

provides a significant optimization for placement of 2D layout 

style and for networks with a larger number of transistors. Lib 

EAD tool [10] introduces the idea of clustering where the PMOS 

and NMOS transistors directly connected are enclosed in subsets 

of the network and each subset is placed individually. Another 

EAD tool called XPRESS [11] also uses this clustering technique 

to place transistors, aiming the decrease of diffusion gaps and 

height of a cell for linear-matrix layout style. Cellerity [12] was 

one of the first to use a Simulated Annealing technique to place 

transistors, allowing the placement for 2D layouts also. Finally, 

Iizuka et. al. proposes two algorithms of placement which are 

considered the state-of-art nowadays [13,14]. Both techniques use 

a SAT solving procedure to get the better placement of the 

transistors in the cell, providing optimized solutions in a short 

computing time compared to others classic methodologies and 

EDA tools mentioned before. 

As we can see, the algorithms described above try to cover 

different aspects of the cell, and each one of them is concerned 

about a particular set of constraints. This paper discusses those 

that are related to the transistors arrangement topology, such as 

planarity, duality and the Eulerian properties. Table 1 summarizes 

these aspects for the algorithms mentioned before. 

To comprehend the relation between these topological aspects and 

the NSP networks, let us consider the network generated by a 

state-of-art algorithm illustrated in Figure 3. As we can see, this 

NSP solution not only is non-planar but also the number of 

switches between the plans is different (10 and 8 switches for 

PUP and PDW, respectively). This way, methodologies that have 

constraints of planarity, duality, number of transistors or those 

that only accept series-parallel networks do not offer support for 

NSP arrangements. It is important to notice that most of EDA 

tools do not support this topology, as Table 1 shows. 
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Figure 3. A non-series-parallel and non-planar network. 

This paper aims to evaluate the impacts of these topological 

aspects considering common-used libraries, proposing a 

methodology to create NSP transistor arrangements based on a 

state-of-art algorithm to generate optimized logic networks. 



Table 1. Constraints in algorithms of placement 

Constraints [5] [8] [9] [10] [11] [12] [13] [14] 

Series-parallel 

connections 
Yes Yes Yes No No No Yes No 

Planarity Yes Yes Yes No No No Yes No 

Duality Yes Yes Yes No No No Yes No 

Equal number of 

switches PUP and 

PDW 

Yes Yes Yes No No No Yes No 

 

4. PROPOSED METHODOLOGY 
To evaluate topological aspects of logic networks, we have to 

generate several NSP arrangements for different Boolean 

functions. For the past decades, many alternatives to solve the 

minimization and factorization problems are proposed aiming to 

optimize logic networks [2,3,4]. Recently, graph-based approach 

algorithms have demonstrated that they can be an efficient way to 

build optimized arrangements, becoming a valuable alternative to 

the modern logic design. Kernel Finder (KF) [1] is a state-of-art 

methodology that uses NSP networks to perform this optimized 

transistor network generation. For this reason, we have used the 

KF tool to produce transistor networks to perform our analysis. 

There are many ways to construct a logic network, even using a 

tool as KF. To generate the minimum arrangement produced by 

KF in terms of number of switches, we proposed the Algorithm 1. 

Algorithm 1 Pseudocode for Network Construction via KF 
 

1:    buildNetwork ( F ) 

2:        PUP ← kernelFinder ( F ) 

3:        PDW ← kernelFinder ( !F ) 

4:        if ( isPlanar ( PUP ) and isPlanar ( PDW ) ) then 

5:                if ( PDW.n < PUP.n ) then 

6:                        PUP ← dual ( PDW ) 

7:                else then                                    

8:                        PDW ← dual ( PUP ) 

    9:        end if         

  10:          end if 

  11:        return PUP ∪ PDW 

  12:    end      

The algorithm starts building the two logic plans PDW and PUP 

in lines 2 and 3 respectively. To perform this, KF computes the 

plans generated by F (direct Boolean function) and !F 

(complementary function). There are two possible situations: (1) 

PDW and PUP are both planar or (2) at least one of them is non-

planar. Line 4 performs a planarity check for each plan through a 

Boyer-Myrvold method [6]. In case of a planar arrangement, lines 

5 to 10 are executed. Line 5 investigates which plan has less 

transistors in the arrangement, considering that KF can generate 

plans with different number of switches for F and !F. In case of 

more transistors in PDW, then PUP receives the dual graph of 

PDW (line 6) and vice versa (line 8). As mentioned before, the 

other situation is when there is a non-planar plan. In this case, it is 

not possible to generate a dual graph. Finally, line 11 returns the 

full network composed by the PUP and PDW plans. 

As we can see, the planarity and duality tests are already executed 

in the implementation flow described for Algorithm 1. To 

complete the test stage, we need to verify the number of 

transistors in PUP and PDW, besides the Eulerian aspect of both 

plans. 

Performing these network implementation and test flows we 

generate, via KF, an optimized (NSP) transistor arrangement 

derived from a Boolean expression 

5. RESULTS 
The experiments presented in this section were made under a set 

of well-known benchmarks presented in most of works referenced 

in this paper. The catalog are composed by the NSP handmade 

cells [15] (53 functions), Nimomya’s catalog [16] (402), the 4-

input P-class [17] (3982) and the eleven variable and ninety-nine 

literals expression discussed as study case in [1] (named from here 

as 11-input), which give us a total of 4438 Boolean functions. 

5.1 Planarity and Duality 
Table 2 summarizes the planarity and duality results. Notice that, 

if the network has at least one planar plan, then it is possible to 

construct the dual network from that plan. 

Table 2. Planarity and duality 

Benchmark 

Both planar 

plans / Dual 

(#) 

One planar 

plan / Dual 

(#) 

Both non-

planar / Non-

dual (#) 

[15] 53 0 0 

11-input 1 0 0 

[16] 340 14 49 

[17] 3183 564 235 
 

As we can see, for the functions [15] and for 11-input, we did not 

have any occurrence of non-planarity or non-duality. However, in 

[16] and [17], 12.43% and 20.07% of networks are not fully (both 

plans) planar, respectively. As discussed before, in those cases is 

not possible to generate dual plans, which increase the placement 

complexity and even impossibilities some methodologies to deal 

with this network. 

5.2 Difference in the Number of Transistors 
Considering the Algorithm 1, we aim to optimize the number of 

transistors in the design procedure of the full network. Table 3 

enumerates how many functions (relatively to the entire 

benchmark) have different number of transistors (affecting the 

placement methods illustrated in Table 1) considering the 

minimum cell that can be created by KF. 

Table 3. Functions with different number of transistors in 

pull-up and pull-down plans 

Set 
Func. 

(#) 

Func. 

(%) 

Sum of switches 

differences (#) 

Average 

(#) 

Std. dev. 

(#) 

[15] 0 0 0 0 0 

11-inp. 0 0 0 0 0 

[16] 5 1.24 6 1.2 0.44 

[17] 421 10.57 565 1.34 0.62 
 

 

Table 3 shows that, in case of planarity in both plans, [15] and 11-

input, the network with minimum number of switches generated 

via KF has the same number of transistor in PUP and PDW. For 



[16] and [17], 1.24% and 10.57% of functions have difference in 

the transistor count between PUP and PDW, with an average of 

1.2 and 1.34 more transistors per plan and 0.44 and 0.62 of 

standard deviation, respectively. 

5.3 Eulerian Networks 
The last aspect observed in this paper is the Eulerian 

characteristic. It describes how many networks will produce 

layouts with at least one diffusion gap, as reviewed in the section 

2. Table 4 describes this characteristic. 

Table 4. Eulerian networks 

Set 
Eulerian 

(#) 

Eulerian  

(%) 

Non-

Eulerian (#) 

Non- 

Eulerian (%) 

[15] 38 71.70 15 28.30 

11-input 1 100 0 0 

[16] 211 52.49 191 47.51 

[17] 1849 46.43 2133 53.57 
 

Table 4 shows that 28.30%, 47.51% and 57.57% of the cells 

implementing the set of functions [15], [16] and [17], 

respectively, will have a gap, increasing the area. In addition, for 

these networks, the placement algorithms need to implement a 

diffusion break procedure, since this is not trivial. 

6. CONCLUSIONS AND FUTURE WORKS 
The paper presents some topological aspects of NSP networks. 

This was made by proposing an implementation and test 

methodology that creates optimized switch networks via a state-

of-art algorithm, which allows the verification of how affected the 

placement algorithms with topological constraints will be dealing 

with this kind of arrangement. 

The results show that, for the sets [15-17] adding the 11-input, in 

[16] and [17] catalogs, 12.43% and 20.07% of the networks, 

respectively, are fully non-planar. It demonstrates that a relevant 

set of NSP functions have singular topological aspects, which has 

directly impact of some classical placement methodologies and 

increase the complexity of this procedure. Also, is presented the 

number of functions with different switches count between PUP 

and PDW considering non-planar solutions, 1.24% and 10.57% 

for [16] and [17], respectively. Finally, our results demonstrate 

that a large number of cells will have gap in the diffusion area, 

71.70%, 52.49% and 46.43% for [15], [16] and [17] catalogs, 

respectively. 

As future works we intent to investigate the classical and state-of-

art placement and routing methodologies applied to NSP networks 

aiming the development of a layout estimator and an EDA tool for 

arrangements without topological constraints.  
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