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ABSTRACT 

Nowadays multipliers are essential components in integrated 

systems implementations. They have different architectures and 

implementations techniques that improve performance of the 

overall architecture. The purpose of this work is propose some 

architectures for implementing high-speed multiplier for 

reconfigurable devices. Architectures based on Booth Algorithm 

and Wallace Tree were developed and analyzed considering 

performance and area used in the reconfigurable device.   

Categories and Subject Descriptors 

B.2 [Arithmetic and logic structure]: Design Styles—pipeline; 

B.2 [Arithmetic and logic structure]: High-Speed arithmetic; B.2 

[Arithmetic and logic structure]: General 

General Terms 

Algorithms, Measurement, Performance, Design. 

Keywords 

Hardware; arithmetic; multiplier; high-speed; 

1. INTRODUCTION 
Multipliers are key hardware blocks for performance of integrated 

systems such as microprocessors, graphics processors, co-

processors, among others. Architectures and implementations of 

these components have a huge impact on logical and arithmetical 

units (ULAs), which can determine the final performance of the 

overall integrated system. Eventually efficient improvements on 

implementation and architectural organization of such components 

are necessary. Considering this, in this paper we developed a 

multiplier architecture based on Booth’s Algorithm [1] and 

Wallace Tree [2], which allows obtain a efficient multiplier. 

The rest of this paper is organized as follows. The second section 

presents Booth’s Algorithm, Wallace Tree and Adders used to 

design the multiplier, discussing their implementation advantages. 

Third section shows performance results obtained from some 

multipliers designed from variations of their internal components. 

Section four presents conclusions and future works. 

2. ARCHITECTURE COMPONENTS 
The multiplier implementation presented in this paper uses the 

Booth’s Algorithm to generate partial products and an Wallace 

Tree to reduce them. Along this section, the Booth Algorithm and 

Wallace Tree are briefly presented. 

2.1 A. Booth’s Algorithm 
The Booth’s Algorithm, also known as Radix-2 Booth’s 

Algorithm, allows multiplication of positive and negative binary 

numbers in two’s complement, commonly used in multiplier circuit 

for signed numbers. The version of the algorithm used in this paper 

is Radix-4 Booth’s Algorithm [3]. This version was chosen 

considering its simplicity and easily deployment, among other 

advantages that will be discussed soon. The algorithm consists in 

codifying one multiplication operand, reducing the number of 

partial products by half, so reducing chip area. The adoption of this 

algorithm resulted in improvements in multiplication of long 

numbers. 

As presented in Figure 1, Radix-4 Booth Algorithm encodes the 

multiplier operand, where a zero bit is appended in less significant 

bit.  The operand is analyzed from the less significant to most 

significant bit, grouped in blocks of three bit, whose the most 

significant bit of one block overlaps the less significant of the next 

block. 

 

Figure 1. Three bits block division example of the multiplier 

operand with a zero bit appended in less significant bit (a). 

Result of codification (b). 

 

Each block of three bits codifies according with Table 1, resulting 

in multiplication of the multiplicand operand by ±1, ±2 or 0, to 

generate the partial products, which will be summed posteriorly. 

 

Table 1. Radix-4 partial product generation table. 

Block Partial Product 

000 Multiplication of the multiplicand by 0 

001 Multiplication of the multiplicand by 1 

010 Multiplication of the multiplicand by 1 

011 Multiplication of the multiplicand by 2 

100 Multiplication of the multiplicand by -2 

101 Multiplication of the multiplicand by -1 

110 Multiplication of the multiplicand by -1 

111 Multiplication of the multiplicand by 0 



 

The improvements of Radix-4 algorithm from Radix-2 is in the 

recodification way, grouping blocks of three bits, allowing 

generation of N/2 partial products, where N is the length of 

operands. In contrast, the Radix-2 algorithm groups 2 Bits blocks, 

generating N partial products, not being recommended for 

multiplication of huge numbers. 

Another approach is Radix-16 Booth’s Algorithm [4], aiming 

reduce partial products of N-bits multiplication to N/4, therefore 

reducing subsequent operations. 

 

 

Figure 2. Radix-16 codification blocks division. 

 

The process codifies blocks of 5 bits, as shown in figure 2, and 

then analyses according with Table 2, which two combination of 

bits can generate same partial product. 

Table 2. Radix-16 partial product generation table. 

Bit Block 
Partial 

Product 
Bit Block 

Partial 

Product 

00000, 11111 0 11101, 11110 -1 * MPLD 

00001, 00010 +1 * MPLD 11011, 11100 -2 * MPLD 

00011, 00100 +2 * MPLD 11001, 11010 -3 * MPLD 

00101, 00110 +3 * MPLD 10111, 11000 -4 * MPLD 

00111, 01000 +4 * MPLD 10101, 10110 -5 * MPLD 

01001, 01010 +5 * MPLD 10011, 10100 -6 * MPLD 

01011, 01100 +6 * MPLD 10001, 10010 -7 * MPLD 

01101, 01110 +7 * MPLD 10000 -8 * MPLD 

01111 +8 * MPLD   

 

Figure 3 shows the general diagram of Booth‘s Algorithm used to 

design the multiplier. 

 

Figure 3. General structure architecture diagram of Booth’s 

Algorithm. 

 

2.2 Wallace Tree 
Multiplication circuits need to perform successive additions of 

partial products, generating dependencies between operations. The 

Wallace Tree offers an efficient structure for implement parallel 

faster additions of the partial products. It avoids carry propagation, 

requiring only an addition at the end of tree to obtain the result. 

Compressors [5] are the basic blocks used in the implementation of 

the Wallace Tree. The use of compressors contributes to decrease 

the amount of additions in a multiplication. In this paper 4:2 

Compressors [5] are used, reducing groups of four partial products. 

4:2 Compressors have five inputs A, B, C, D and CIN to generate 

three outputs SUM, CARRY and COUT, as shown in figure 4. 

 

 

Figure 4. 4:2 Compressor structure (a). Logic architecture (b). 

 

As shown in figure 5, the organization of the Wallace Tree with 4:2 

compressors groups four partial products in parallel to perform the 

compression at each level of the tree. The output of each 

compressor becomes an input at next level, until all partial 

products become reduced to two inputs for addition at the end of 

tree. 

 

Figure 5. Wallace Tree structure with 4:2 compressors. 

 

The implementation of the Wallace Tree in pipelined way [6] aims 

to improve the frequency of operation. Moreover it allows 

performing successive faster multiplications, adding registers 

between tree’s levels. 

2.3 Adders 
Efficient implementation of the adder induces huge impact in the 

multiplier performance. A traditional adder is the Carry-Propagate 

Adder [7]. It has a simple architecture, but offers inefficient 

performance, due carry propagation from less significant bit to 

most significant. 



A bit more complex adder's architecture as Carry Look Ahead 

Adder [7] (figure 6) allows forwarding carry due the addition of 

extra signals that calculates the Generation and Propagation signals 

(figure 7) [7]. The Carry Look Ahead Adder reduces the critical 

path and improves the operation speed. 

 

Figure 6. Carry Look Ahead Adder architecture 

 

Figure 7. Carry Look ahead Cell (CLC) with generation and 

propagation carry signals. 

3. Architectures, Results and Comparison 
To design the multiplier, various architectural organizations are 

available. Each one has significant impact in the overall 

performance. This paper presents some architectures, their 

performance comparison and discuss about their benefits. 

The multipliers architectures designed in this paper have Wallace 

Tree with and without pipeline, both using Radix-4 and Radix-16 

Booth`s Algorithm to generate partial products. Each type of 

architecture implements different type of adders in Wallace Tree. In 

addition of Carry-Propagate Adder and Carry Look Ahead Adder, 

was included the Altera Adder. Figure 8 shows the general 

architecture diagram. 

BOOTH 
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MULTIPLICAND

PARTIAL 
PRODUCTS

RESULT

 

Figure 8. Multiplier general structure diagram. 

 

Table 3 shows obtained results from 32 Bits Multipliers with 

Radix-4 Booth’s Algorithm. Results also include the Altera 

Multiplier only for performance comparison. 

Pipelined multipliers have high frequency, but needs more cycles to 

produce results. Considering the need of successive multiplications, 

results can be producer successively after the first product. This 

fact is nullified when few operations are requested in a determined 

period of time. Architectures without pipeline are slower, but 

present result in one cycle. The of such implementation presents 

advantages over the pipelined one if the number of operations do 

not exceeds the pipeline time to produce the same number of 

results. Figure 9 compares implementations with and without 

pipeline showing the number of successive operation from which 

using pipeline is advantageous. 

 

Table 3. Frequency and chip area comparison. 

Architect

ure 

Wallace 

Tree 
Adder 

Frequency 

Chip 

Area 
Fmax 

(Slow 

1200mV 

85C 

Model) 

Fmax 

(Slow 

1200mV 

0C Model) 

Developed 

in this study 

Without 

Pipeline 

Carry-

Propagate 

Adder 

37.54 

MHz 

41.72 

MHz 

2,468 

LE 

Carry Look 

Ahead Adder 

52.44 

MHz 

58.10 

MHz 

2,416 

LE 

Altera Adder 
90.52 

MHz 

102.16 

MHz 

2,655 

LE 

With 

Pipeline 

Carry-

Propagate 

Adder 

56.82 

MHz 

64.02 

MHz 

2,524 

LE 

Carry Look 

Ahead Adder 

149.37 

MHz 

167.95 

MHz 

2,432 

LE 

Altera Adder 
205.63 

MHz 

235.13 

MHz 

2,325 

LE 

Altera 

Multiplier 
- - 

79.33 

MHz 

89.40 

MHz 

1,409 

LE 

 

 

Figure 9. Cycles representation of the multipliers applied 

successive operations. 



Table 4 shows the number of multiplications without pipeline 

recommended until exceeds the pipelined time, representing 

advantages regarding the number of results. 

 

Table 4. Recommended successive operations number without 

pipeline for each architecture. 

Adder Type 
Recommended Multiplications (Without 

Pipeline) 

Carry-Propagate Adder 6 

Carry Look Ahead Adder 2 

Altera Adder 3 

 

The Table 5 show frequency and chip area of pipelined multipliers 

with Radix-4 and Radix-16 Booth’s Algorithm. 

Table 5. Performance data of 32-Bits Radix-4 and Radix-16 

Multipliers. 

Architecture 
Booth's 

Algorithm 
Adder Frequency 

Chip 

Area 

Multiplier with 

Pipeline 

Radix-4 

Carry-

Propagate 

Adder 

64.02 MHz 2524 LE 

Carry Look 

Ahead Adder 

167.95 

MHz 
2432 LE 

Altera Adder 
235.13 

MHz 
2325 LE 

Radix-16 

Carry-

Propagate 

Adder 

89.45 MHz 4614 LE 

Carry Look 

Ahead Adder 

174.43 

MHz 
4717 LE 

Altera Adder 
255.98 

MHz 
4557 LE 

 

Table 6 shows the total cycles of each multiplier affected by 

Booth’s Algorithm approached in this study and its Wallace Tree 

level amount affected by partial products reduction.  

 

Table 6. Wallace Tree levels and necessary cycles of Radix-4 

and Radix-16 Booth’s Algorithm Multipliers 

 32-Bits Multiplier 

 Wallace Tree levels Necessary Cycles 

Radix-4 Booth Algorithm 3 6 

Radix-16 Booth Algorithm 2 5 

 

As shown in table 7, switch Radix-4 to Radix-16 improves 

frequency, even for a little increment. However, chip area nearly 

doubles due to increase complexity of the logic in Radix-16 

codification. 

4. CONCUSION 
In this paper faster multipliers were implemented, performance 

comparisons were presented and the impacts of the components 

architecture to improve performance were discussed. 

The results presented that pipelined multipliers are most effectives 

when subjected to successive operations. Allowing high amount of 

result outputs in less time. Also presented that multipliers without 

pipeline have acceptable performance by cycle, being a feasible 

solution to application that do not need successive operations. 

As shown in comparisons, pipelined multipliers with alternatives 

Booth’s Algorithm implementation have an improvement in 

performance. However having as trade-off an impact in chip area 

due the complexity of partial products generation. 

In future works this study will assist deployment of high-speed 

multipliers in many core processor architectures, aiming the 

improvement and assess its performance in various applications. 

Table 7. Radix-4 to Radix-16 Comparison (Pipelined 

Multiplier). 

Radix-4 to Radix-16 Comparison (Pipelined Multiplier). 

Adder Type 
Frequency 

Gain 

Frequency 

Gain (%) 

Chip Area 

increase 

Chip Area 

increase 

(%) 

Carry-Propagate 

Adder 
25.43 MHz 39,72% 2090 LE 82,81% 

Carry Look 

Ahead Adder 
6.48 MHz 3,86% 2285 LE 93,96% 

Altera Adder 20.85 MHz 8,87% 2232 LE 96,00% 
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