
Improvements of the SwitchCraft Framework

Gabriel Ammes, Jeferson José Baqueta
1
, André I. Reis

1,2
, Renato P. Ribas

1,2

1
PPGC /

2
PGMicro / Institute of Informatics

UFRGS, Porto Alegre, Brazil

{gabriel.ammes, jeferson.josebaqueta, andreis, rpribas}@inf.ufrgs.br'

Abstract— With the constant growth of the number of devices

in a single chip, the use of CAD tools is essential to manufacture

efficient and optimized integrated circuits (IC). For each step of

the IC design flow, there is a set of CAD tools that may be

applied to automate several tasks, such as the algebraic and

Boolean factoring, technologic mapping, local and global routing,

test and verification of failures, among others. In this context, we

presented some improvements performed on the SwitchCraft

Framework, a CAD tool used to generate transistors networks

and logic gates for CMOS technology. Among the new features

implemented are the inputs and output logic formats, And-

inverter graph (AIG) and threshold logic format, besides the

implementation of a transistor placement method, which may be

used to decrease the congestion of a logic gate.

Keywords—CAD tools, design of digital circuit, CMOS logic gate;

I. INTRODUCTION

Along of the years, more compacts and faster circuits have
been manufactured due to high density of transistors in a single
chip. However, to provide the high density of components,
CAD tools more complex and optimized are needed. For
instance, for the VLSI circuits, composed by thousands of
transistors, specific CAD tools are used to evaluate and
automate the design of such circuits [1] [2]. Therefore, due to
number components used in this type of circuit, the manual
synthesis is unfeasible.

In this sense, to keep up the technology advancement, it is
essential that the CAD tools are flexible. This way, such tools
may offer the needed support for the constants technology
innovations. Currently, there is a great amount of academic and
commercial specific CAD tools adopted to automate different
task in relation to synthesis of integrated circuits [3][4][5][6].

The representaion of Boolean functions is one important
task performed during the integrated circuit synthesis, since the
such representation may impacts in several others parts of the
IC design. In this context, the SwitchCraft framework [7] was
proposed, offering a complet set of tools for switch network
and logic gates generation. This way, we propose two new
features that were implement in the SwitchCraft framework.
The first is a expansion of the inputs and outputs logic formats
supported by SwitchCraft, incluing the And-inverter graph
(AIG) and threshold logic format. Another improvement
performed was the implementation of a placement transistor
method. In such method the Euler path algorithm is applied to
obtain a compact CMOS logic gate. In this context, a quite
simple evaluation metric adopted is wire congestion estimation.

Since several possible paths can be generated through a input
switch network.

The rest of this paper is organized as follow. Section II
presents some logic structures and definitions. Section III
presents the SwitchCraft framework and the improvements
performed. Section IV presents the transistor placement
method. Section V presents the obtained results, whereas the
conclusions are presented in Section VI.

II. BACKGROUND AND DEFINITIONS

This section reviews some useful definitions regarding the
logic structures used to represent Boolean functions adopted in
this work.

A. Switch networks and CMOS gate

A logic switch is the most basic element of a switch
network. Such logic switch contains one control terminal, gate
(G), and two contact terminals, source (S) and drain (D). The
control terminal determines if there is a connection between the
contact terminals [8]. The two possible configuration for a
logic switch, the direct and complementary switch are present
in Fig.1(a) and Fig.1(b), respectively. Through an arrangement
of logic switches a given Boolean function may be
implemented. Usually, according to the kind of logic switch
associations present in a switch network, such network can be
classified in serie-parallel (SP) and non-serie-parallel (NSP)
network. In Fig.1(c) a NSP switch network is shown, whereas
in Fig1(d) a SP is presented.

(a) (b)

(c) (d) (e)

Fig. 1 switch networks and CMOS logic gate representation: (a) direct logic

switch; (b) complementary logic switch; (c) NSP switch network; (d) SP

switch network; (e) CMOS logic gate that implements the Boolean function F

= a+(b*c).

The switch networks can be used to implement the CMOS
logic gate. Basically, a gate is composed by two
complementary planes, pull-up plan and pull-down plan. The
pull-up plan is composed by P-MOS transistors, which are
represented by complementary logic switches, and pull-down
plan is composed by N-MOS transistors, which are represented
by direct logic switches. In Fig.1(e) it is shown the CMOS
logic gate that implements the Boolean function F = a+(b*c).

B. Threshold logic

The threshold logic functions (TLF) are a subset of
Boolean functions, which can be implemented by a structure
called threshold logic gate (TLG). Such structure is composed
by a set of inputs (xi), where each input has a weight value
(wi), and a threshold value (T) associated to the function. The
logic behavior of the TLF is defined by the sum of the inputs
weights, as follows:

(1)

All threshold functions can be implemented through a
single TLG. In Fig. 2 some TLG are shown, in this case the
weights of the inputs and the Threshold value are defined as
integers. For example, in Fig. 2 (a) the logic function AND3 is
shown, this way, each input has its weight equals to 1 and the
threshold value is 3. The process to identify if a given Boolean
function is threshold, is called TLF identification [9]. If a
given function is not TLF, more than one gate is necessary to
implements such a function. The set of TLGs used to
implement a non-TLF is called TLG network. In Fig. 2(d) is
shown a TLG network corresponding to F = (a*b)+(c*d).

(a) (b) (c) (d)

Fig. 2 Threshold logic function implementations; (a) 3-input OR; (b) 3-input

AND; (c) F = (a*b) + (a*c) + (b*c*d) + (b*d*e); and (d) F = (a*b) + (c*d).

C. And Inverter Diagram (AIG)

An and-inverter graph (AIG) is directed acyclic graphs
(DAG) where the nodes are represented by AND2 gates or
primary inputs. The nodes of a AIG are conneted by edges,
which has its polarity defined by inverters represented by
bubbles on the edges. An exemple of AIG is presented in Fig.3,
the Boolean function F = (x1 + x2 + (x3 * x4)).

Fig. 3 AIG representation: such structure implements the Boolean function F

= (x1 + x2 + (x3 * x4))

III. SWITCHCRAFT IMPROVEMENTS

The main goal of the SwitchCraft framework is to provide
a set of algorithms and methods to help designers to generate
transistors networks and logic gates, as well as to estimate and
evaluate them [7]. Basically, such framework is divided in
four main modules:

 Data input module: offer support to several inputs
formats, such as Boolean expression, binary decision
diagram (BDD), truth table, BLIF and Spice netlist.
These formats are used as inputs to generate the switch
networks and logic gates.

 Transistor network generation: responsible to generate
transistor networks with different arrangements and
electrical behaviors. Besides the switch networks
generated through the inputs formats, this module can
generate the complementary switch networks
considering the input switch network.

 Transistor network profile and estimation: implements
a set of estimation methods, considering the electrical
behavior of switch networks. Among the estimations
methods implemented are Elmore delay module,
Dynamic power consumption, Static power
consumption and Area estimation.

 Transistor network view: this module implements some
options to visualize different switch networks and logic
gates generated by framework.

The features implemented in this work are inserted in the
Data input and Transistor network profile and estimation
modules. In this context, the Data input module consists of an
independent tool called Logic2Logic. This tool is used to
converted logic formats representations, among them are truth
table, BDD, BLIF and others [10]. This tool is integrated to
the SwitchCraft, expanding the inputs formats used as base for
the switch networks and logic gate generations. This tool, also
offer a visual representation for each input logic format
supported.

 Basically, the Logic2Logic converts any input format to a
truth table representation, which is converted for any output
format defined by user. In this work, we presented two new
input and output logic formats implemented in the Logic2Logic
tool. The AIG format has a textual and visual representation,
whereas the threshold format has only the textual
representation. The transistor placement method implemented
is described with more detail hereafter.

IV. TRANSISTOR PLACEMENT METHOD

The Euler path is a convencional algorithm of placement
used to reduce the number of diffusion gap during the layout
generation. The goal of algorithm is find the same
uninterrupted path of transistors, called Euler path, in the pull-
up plan and in the pull-down plan of a logic gate [6]. On the
other hand, when it is not possible to find one single Euler
path, the algorithm returns two or more sub-Euler paths, which
are seperated by a diffusion gap. However, the diffusion gaps
increase the number of contacts used to route the circuit, and
consequently the congestion of wire.

In order to reduce the number of difussion gap, in cases
where there is not a single Euler path, one pre-analysis can be
applied. Such analysis consist of one reordering of the serial
associations of transistors or sub-networks. Since the Boolean
function represented by a given switch network is not changed
by reordering of series associations. Besides, in some cases,
such reordering can defines the occorence of an Euler path. An
example is presented in Fig.4, where the Euler path is found
after the reodering of the switch network. In Fig.4(a) it is
possible to seen the switch network before the reordering,
whereas Fig.4(b) presents the topology obtained after the
reordering, which contens a single Euler.

(a) (b)

Fig. 4 Reordering of serial associations of switch: (a) switch network before

the reordering and (b) switch network after one.

In the transistor placement method a SP switch network
and its dual network are used as inputs. In the current
implementation, our method cannot be applied in the NSP
switch networks. In order to identify all combinations
between the serial associations, the algorithm interchange the
serial associations of each switch network. Each new
combination represents a new switch network. In sequence,
the Euler path algorithm is applied for all switch networks
generated. A matching checker is used to verify if a given
Euler path, found in a SP switch network, can be also found in
its dual network. In positive case, theses switch networks are
stored in a list, which is used in the next step of the method to
find the logic gate that presents the smaller wire congestion.
Otherwise, gaps are inserted and the results networks are
submitted to the permutation step again, as it is presented in
the Fig.5.

Fig. 5 flowchart that describes the propose method.

In the method implemented each switch network is
represented by a multi-graph. A multi-graph G consists in a
triple of nodes (vertices) set V(G), an edges set and the
relation between edges and vertices [7]. In this work, each
edge connects two distinct vertices. The nodes of the switch
network are mapped as V(G), whereas, the transistors (or
switches) are equivalent to the edges. Moreover, an up-graph
is used to represents a given switch network and its dual
network is represented by a down-graph.

The first step of our method interchange the serial
association in both graphs, up-graph and down-graph. In this
context, edges or sub-graphs in serial associations are
interchanged. For each up-graph permutation, the Euler path
algorithm is applied. All Euler paths found are stored and used
as input for the next step of the method. Whether, through a
given Euler path obtained from up-graph, it is possible to
travel on down-graph visiting all its edges, such Euler path
may be also found in the down-graph. This situation defines
the matching between networks.

This way, the matching between up-graph and the down-
graph is used to define the wire congestion value for a specific
gate configuration. The congestion value is computed
considering the canal routing approach [11]. Thus, the number
of tracks and contacts used in the routing of each network
defines the congestion value. However, depending of the Euler
path adopted some tracks may be shared, decreasing the
congestion value.

If a matching between the switch networks is not possible,
it is applied a method to insert fake edges in one or both
graphs. The number of fake edges inserted is minimum, since
the Eulerian algorithm is applied. Thus, the fake edges are
added in the graph until only two vertices in the graph take
odd degree. Each new fake edge represents a gap diffusion in
the transistor placement. After the insertion of fake edges, the
modified switch networks return to the permutation of series
step again.

V. RESULT AND IMPLEMENTAIONS

A. AIG format

The textual format used to represent the AIG
implementation was the AIGER format [12]. In this format, an
integer number, multiple of two, represents each input, output
and AND2 gate from AIG structure. The inverter gate does not
have an explicit representation. By this reason, the polarity of a
given signal (input, output or AND2 gate output) is defined by
number that represents such signal. Therefore, whether this
number is an even number the polarity of the signal is positive.
Otherwise, the polarity is negative. An example of this format
is shown in Fig.6, where the Boolean function F =
(x1+x2+(x3*x4)) is described. It is important to notice that the
first line of the textual AIG format represents its header, where
the name of AIG is defined, followed by number of
components, inputs, latches, outputs and AND gates. A graphic
representation for such Boolean function is presented in Fig.3,
which was obtained through AIG viewer implemented.

#header
 AIG_name 7 4 0 1 3
#Declaration of inputs:
 2 # x1
 4 # x2
 6 # x3
 8 # x4
#Declaration of outputs:
 11 # !((! x1*! x2)*!(x3* x4))
#Declaration of AND gates:
 10 12 15 # (! x1*! x2)*!(x3* x4)
 12 3 5 # ! x1*! x2
 14 6 8 # x3* x4

Fig. 6 Textual AIG format description

B. Threshold format

The textual format used to represent a threshold logic gate
(TLG), consists in a sequence of inputs variables and its
respective weight values, besides the threshold value. Such
format is represented as in the follow, considering the threshold
function F = (x1+x2+(x3*x4)):

T[x1(2),x2(2),x3(1),x4(1);2] (2)

Depending of the situation, the threshold logic format can
be used as input or output. This way, the convectional logic
formats supported by Logic2Logic can be converted for
threshold logic format, as well as, a given threshold logic
function can be converted to conventional formats supported
by Logic2Logic. As we adopted the threshold identifier
proposed in [9], the threshold logic converter implemented
herein, cannot be used to non-threshold logic functions, since
such functions results in a TLG network, as discussed in
Section 2.

C. Transistor placement method

In order to evaluate the method proposed in the Section 3,
we used a specific set of Boolean functions obtained from the
library Genlib [13]. In total we selected one hundred Boolean
functions, from five up to ten input variables. A logic gate has
been built for each logic function, and hence, its respective
pull-graph and down-graph. Two wire congestion estimations
have been performed, one for the logic gate disregarding to
serial reordering, and other regarding the serial reordering.
The wire congestion for a logic gate is estimated through the
number of contacts (#C) and the number of tracks to routing
(#T). In this context, the wire congestion value is computed by
product between the #C and #T, as it is shown in Table 1. Also
a percentage value is presented in Table 1, such value
represents the improvement in ration to the wire congestion
(T*C) when the reordered network is compered with the
original network.

TABLE I. LOGIC GATES AND WIRE CONGESTION ESTIMATION

Boolean function
Original gate Reordered gate

%
#T #C T*C #T #C T*C

(a*(b+c*(d+e))) 5 16 80 4 12 48 60

(a*(b+c*(d+e*f))) 6 18 108 4 14 56 52

(a*(b+c*(d+e*(f+g)))) 7 20 140 4 16 64 46

(a*(b+c*(d*e+f*(g+h)))) 7 22 154 6 18 108 70

(a*(b+c*(d+e+f))) 5 14 70 4 14 56 80

(a*(b+(c+d*(e+f))*(g+h+i))) 7 24 168 5 20 100 60

(a*(b+(c*d+e*(f+g))*(h+i+j))) 7 26 182 6 22 132 73

(a*(b+c*d*(e+f))) 5 18 90 4 14 56 62

(a*(b+c*d*(e+f+g))) 5 16 80 4 16 64 80

(a*(b+c*(d+e)*(f+g+h))) 5 22 110 5 18 90 82

(a*(b*c+d*(e+f))) 5 18 90 5 14 70 78

(a*(b*c+d*(e+f*g))) 7 20 140 5 16 80 57

(a*(b*c+d*e*(f+g))) 5 20 100 5 16 80 80

(a*(b*c+d*(e+f)*(g+h))) 6 22 132 5 18 90 68

(a*(b*c+d*(e+f)*(g+h+i))) 6 24 144 5 20 100 69

(a*(b*c+d*(e+f+g)*(h+i+j))) 6 22 132 5 22 110 83

(a*(b*(c+d)+e*f*g)) 5 20 100 4 16 64 64

As it is possible to notice, due to limited space, only some
Boolean functions are presented in Table 1. However, for the
functions presented in Table 1, the wire congestion estimation,
for the logic gate built after the reordering, presents better

results than original logic gate. In some cases, when the
number of networks generated using method presented in this
paper is higher than 3000 networks, the runtime is infeasible.

The most significant results, in Table 1, are obtained in
cases where the original logic gates did not present gap
diffusion. In this cases, after the serial reordering, the gap
diffusions are avoided due to Euler path occurrence, impacting
in the reduction of the number of contacts and of tracks used
in the routing. Inclusive, logic gates that initially presented
Euler path may be improved, because through the serial
reordering, a small and better Euler path can be found to
decreasing the number of tracks used in the gate routing.

CONCLUSIONS

The features implemented in this work extend the set of

tools originally available by SwitchCraft framework, offering

two new input and outputs formats, besides a transistor

placement method. As a future work, we intend implements a

method for dual-switch network generation, due to the great

importance of such method in the generation of CMOS logic

gates.

REFERENCES

[1] G. Suto, “ Rule agnostic routing by using design fabrics,” Design
Automation Conference (DAC), pp. 471 - 475, 3-7 June 2012.

[2] Ning, P., Wang, F., and Ngo, K. D, “Automatic layout design for power
module,” IEEE Transactions on Power Electronics, vol. 28, nº 1, pp. 481

- 487, 2013.

[3] Martins, R. P., Lourenco, N., and Horta, N., “ LAYGEN II—automatic

layout generation of analog integrated circuits,” IEEE Transactions
Computer-Aided Design of Integrated Circuits and Systems, vol. 32, nº

11, pp. 1641-1654, 2013.

[4] McGeer, P. C., Sanghavi, J. V., Brayton, R. K., and Sangiovanni-

Vicentelli, A, “ESPRESSO-SIGNATURE: A new exact minimizer for

logic functions,” Very Large Scale Integration (VLSI) Systems, vol. 1, nº

4, pp. 432-440, 1993.

[5] Brayton, R., & Mishchenko, A., ABC: An academic industrial-strength

verification tool, Berlin Heidelberg: Springer , 2010.

[6] Ziesemer, A., Reis, R., Moreira, M. T., Arendt, M. E., and Calazans, N.

L., “Automatic layout synthesis with ASTRAN applied to asynchronous

cells,” Circuits and Systems (LASCAS), pp. 1-4, 2014.

[7] Callegaro, V., Marques, F. D. S., and Klock, C. E, “SwitchCraft: a
framework for transistor network design,” 23rd symposium on Integrated
circuits and system design, pp. 49-53, 2010.

[8] Possani, V. N., et al., “Graph-Based Transistor Network Generation

Method for Supergate Design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, nº 2, pp. 692 - 705, 2015.

[9] Neutzling, A., Martins, M. G., Ribas, R. P., and Reis, A. I.. Neutzling,

“A constructive approach for threshold logic circuit synthesis,” Circuits
and Systems (ISCAS), pp. 385 - 388, 2014.

[10] Logic2Logic. http://www.inf.ufrgs.br/logics/downloads. Last acessed in

04/06/2016.

[11] S. H. Gerez “Algorithms for VLSI design automation”, New York,

Wiley.

[12] AIGER format. http://fmv.jku.at/aiger/. Last accessed in 04/06/2016.

[13] Genlib. https://embedded.eecs.berkeley.edu/pubs/downloads. Last

accessed in 04/06/2016.

	I. Introduction
	II. Background and Definitions
	A. Switch networks and CMOS gate
	B. Threshold logic
	C. And Inverter Diagram (AIG)

	III. SwitchCraft improvements
	IV. Transistor placement method
	V. Result and Implementaions
	A. AIG format
	B. Threshold format
	C. Transistor placement method
	Conclusions
	References

