
Virtual Reconfigurable Functional Units on
Shared-Memory Processor-FPGA Systems

Fernando Passe and Vanessa C. R. Vasconcelos
Departamento de Informática,

Universidade Federal de Viçosa,
Campus Viçosa,

Viçosa-MG 36570-900, Brazil
Email: {fernando.passe,vanessa.vasconcelos}@ufv.br

Ricardo Ferreira
Departamento de Informática,

Universidade Federal de Viçosa,
Campus Viçosa,

Viçosa-MG 36570-900, Brazil
Email: ricardo@ufv.br

Lucas B. Silva and J. A. Nacif
Departamento de Informática,

Universidade Federal de Viçosa,
Campus Florestal,

Florestal-MG 35690-000, Brazil
Email: {lucas.braganca,jnacif}@ufv.br

Abstract—Recently, FPGA-based platforms with direct coher-
ent access to processor memory have been proposed. However,
the FPGAs have traditionally been viewed as difficult to program
for the software community and high performance community.
This work proposes a framework to explore the FPGA-processor
platforms as an opportunity for accelerating applications with
streams and irregular parallelism. A virtual layer is mapped
onto the FPGA, and a high dataflow graph could be translate
and mapped dynamically to the FPGA accelerator. The pro-
posed framework add a dynamic reconfiguration layer to the
Intel® shared-Memory Processor-FPGA platform.

Keywords—FPGA, Shared-Memory, Processor-FPGA.

I. INTRODUCTION

One challenge traditionally associated with FPGAs is to
model a computation as an accelerated function, and then
translate it and map it into the reconfigurable architecture.
Moreover, hardware description languages (HDL) are not
friendly for the larger software community. In addition, the
processor and the FPGA system should efficiently exchange
data. Recently, accelerated computing systems that support co-
herent shared memory between processors and FPGAs, includ-
ing direct read/write to the processor's cache [1] become avail-
able. Intel®, Altera®, Xilinx®, IBM® and Microsoft® have
respectively developed products that integrate cache-coherent
shared-memory processors and FPGAs at the system level [1],
[2], [3], [4], [5], [6].

We propose to extend our previous work [7], [8], [9]
on virtual CGRA and Dataflow graphs to the new context
introduced by the Intel® QuickAssist Technology.

As previously said, this technology integrates cache-
coherent shared-memory processors and FPGAs, i.e. the FPGA
can read from processor's cache, it can compute the read data
and it can write the results back on the cache, where they will
be available to processor future access.

There are many advantages to FPGA computation, among
these are the abundant hardware parallelism and the FPGA
high adaptability. Both features are extremely useful and they
can be largely used. The parallelism can speed up processes
and the adaptability allows future modifications.

On the other hand, there are difficulties to handle FPGA
computation. Hardware coding is far from trivial, handling
all the desired parallelism is not usual for programmers.

Generating and loading the bitstream onto the hardware are
also problematic, because in so far as the platform is growing,
the bitstream will take longer to be ready, thus more complex
features will need more time to be checked. Consequently,
identifying errors becomes even harder.

We propose a parameterized architecture to exploit run-time
reconfiguration in Intel®/Altera® platform by using a dataflow
graph model on a flexible CGRA based on global interconnec-
tion model placed as an Accelerated Function Unit (AFU). At
run-time the Intel® Software API will be used transparently by
the programmer, and the dataflow graph will be instantiated
onto a virtual CGRA, as shown in Fig. 1. There is no need
neither to synthesize the AFU nor upload its bitstream on the
FPGA. This will be done once, then a dataflow graph which
expresses spatial and temporal parallelism will be configured
and executed as a dynamic virtual FPGA accelerator.

Section II introduces samples of dataflow graphs. Section III
presents the virtual CGRA architectures. Section IV describes
the proposed methodologies to map the dataflow graph onto
the virtual AFU. Finally, Section V discusses the on-going
work.

Fig. 1. Dataflow framework



Fig. 2. Dataflow Graph for a ax2 + bx+ c.

II. DATAFLOW GRAPH

First, assuming a simple dataflow graph as shown in
Fig. 2. The nodes implement input/output operations and/or
logic/arithmetic functions. Let us suppose the stream compu-
tation ax2 + bx + c. Fig. 2 shows the dataflow graph where
there are spatial and temporal (pipeline) parallelism. X is an
input stream data. Assuming, one clock cycle per operation.
The computation latency will be 3 clock cycles. However,
the throughput will be one new result per cycle due the
pipeline execution. In addition, five operations are executed
every clock cycle and the operator occupation rate is 100%,
the hardware is always doing useful computation, since three
stream instances are overlapped. Our goal is to provide a high
level model to describe parallel stream based tasks. The nodes
could be arithmetic or logic operators. The input and output
nodes will receive/send stream data. The stream could be sent
to the AFU on configuration time or it could be done as a
cache read/write through the QPI Intel® interface – Intel®'s
proprietary interconnect protocol between Intel cores or other
IP – at run-time as depicted in Fig. 3. Following sections will
detail the mapping process.

Fig. 3. Dataflow mapped as an AFU.

Dataflow graphs could also implement control flow oper-
ators. We propose to implement a library of control flow
operators as depicted in Fig. 4 based on previous dataflow
work. Fig. 4a shows functional operators like an adder or a

multiplier. There are also the copy, split or fanout operators
which split one input flow onto two output flows. Fig. 4b
depicts a merge operator. This operator could be used to
implement control flow structure as displayed in Fig. 4c, where
an IF flow is implemented based on Tgate/Fgate operators. The
input condition C will allow the input A or B to propagate
toward the output if C is True or False. There are also other
control flow operators as Sep and Pas depicted in Fig. 4d.

Fig. 4. Data and control flow operators.

The Sep (Serial to Parallel) operator sends the input data
by switching (or alternating) the output. The Pas (Parallel to
Serial) node merges data by switching the input data. These
operators could be useful to simplify the control flow to split
stream data as shown in Fig. 4d, where every chunk of 4 data
will be applied to the following computation. Our goal is to
provide a library of data and control flow operators to allow
the users to design generic and flexible AFU. Fig. 5a-d shows
four possibilities to implement an IF flow, and Fig. 5e depicts
an example of a while loop based on previous dataflow work
[10].

Fig. 5. Dataflow operators

Fig. 6 shows how a C code with an if/else block could be
translated by using control and data operators.

A For block could also be implemented as depicted in Fig.
7, where the factorial function is computed as proposed in
[10].

The first step is to model a target function as a dataflow
graph by using a component library. The next step is to
map the dataflow onto the FPGA architecture. The following
sections will introduce a virtual framework architecture and
the mapping approaches.



Fig. 6. If/Else block and its dataflow

Fig. 7. For block and its dataflow

III. TARGET ARCHITECTURE

We propose a Virtual Reconfigurable Accelerated Function
Unit (VR AFU) as a virtual layer implemented on the top of
FPGA AFU. A dataflow graph will be mapped at run-time
onto the target VR AFU. The VR AFU is synthesized once
and the FPGA bitstream is uploaded on the FPGA as an AFU.
This section describes the VR AFU architecture and the next
section will present the mapping steps.

The traditional flow is depicted in Fig. 8a where the dataflow
will be designed and then implemented at synthesis time.
The AAL/AFU interface will be used during run-time to
send/receive data to be computed by the accelerator. We
propose the flow shown in Fig. 8b, where the virtual AFU
(VR AFU) bitstream is uploaded once at synthesis time. One
or more graphs could be sent and computed at run-time onto
our proposal VR AFU.

Most CGRA architecture are based on mesh topology [2].
Although the mesh is scalable and regular, the mapping
depends on placement and routing algorithms. Our previous
work showed that the mapping could be simplified by using

Fig. 8. (a) Traditional flow on FPGA; (b) Proposed flow on FPGA

a global network [7]. The VR AFU architecture is also based
on a global interconnection. A VR AFU consists of a set
of Functional Units (FUs), which could be data operator or
control flow operator, and an interconnection network. We
propose a flexible VR AFU by providing libraries of FU and
interconnection networks. Users could also add a specific FU
to the library.

The basic architecture is displayed in Fig. 9. The configu-
ration memory has the opcode to program the FU operations
and the interconnections. The FUs also have local registers to
keep data inside the AFU. For small sizes (up to 16 units),
the network could be implemented by using a crossbar. For
larger sizes (up to 256 units), we propose to use multistage
networks [2]. A third option is a hierarchical interconnection
with cluster of VR AFU. We propose also to allow pipeline
inside the interconnection structure to provide TLP (Thread
or/and Task Level parallelism).

IV. MAPPING

The mapping step starts from a dataflow specification to
generate the scheduling, the placement and routing on the tar-
get VR AFU. For ease of explanation, suppose a homogeneous
FU set and a stream dataflow graph. Fig. 10 shows a simple
example of dataflow graph and its final mapping. In addition
to the graph, the proposal solution should also provide the
input and output streams through the QPI layer.

First the data is applied onto the input stream, and it sends
it to FU1 (mult) and FU2 (adder). Then, the second stream
data arrives on FU1 and FU2, and stream 1 is sent to FU3
to compute the subtraction. Finally, the divisor is applied to
the stream data 1 on the third cycle. The streams 2 and 3 are
also in the pipeline. Heterogeneous FU sets as well as large
graphs could be managed. Suppose a small target AFU with 4
FUs. Suppose an unbalanced dataflow graph of 6 operators as
shown in Fig. 11a. We propose to apply our previous modulo
scheduling approaches [1], [2] to place and route by using two
configurations (red and blue), see Fig. 11b. Every two clock
cycle a new stream data is inserted. The latency is 4 clock
cycles, however the throughput is 2 clock cycles.



Fig. 9. Basic architecture

Fig. 10. Dataflow graph and its final mapping

Fig. 11. (a) Unbalanced dataflow graph; (b) Routing configurations

A new stream data will arrive every two clock cycles.
There are two configurations. The first configuration maps 4
operations. The results from the adder and multiplier of the
configuration 1 will be sent to the bypass and the subtractor
on the configuration 2. Then, these operators will send the
results to the AND and the divisor on configuration 1. At the
same time, configuration 1 will receive a new stream data from
the inputs, therefore there is an iteration overlap. Finally, the
results from the AND and the divisor are sent to the final

multiplier on configuration 2, the pipeline is filled and every
two clock cycles, a new stream is processed. Therefore the
architecture support spatial and temporal parallelism and it
could dynamically map a generic dataflow graph.

V. FINAL CONSIDERATIONS

This paper presents a framework to map virtual dataflow
graphs at run-time into shared-Memory Processor-FPGA In-
tel® platform. An ongoing work is implementing FPGA pre-
configuration and dataflow and data run-time transfer to
validate our proposal. Our goal is also to produce didactic
examples to explore the Intel®/Altera® platform and tools.

ACKNOWLEDGMENTS

We would like to thank CAPES, CNPq, and FAPEMIG for
the financial support.

REFERENCES

[1] G. Weisz, J. Melber, Y. Wang, K. Fleming, E. Nurvitadhi, and J. C.
Hoe, “A study of pointer-chasing performance on shared-memory
processor-fpga systems,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’16. New York, NY, USA: ACM, 2016, pp. 264–273. [Online].
Available: http://doi.acm.org/10.1145/2847263.2847269

[2] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,
and D. Burger, “A reconfigurable fabric for accelerating large-scale
datacenter services,” IEEE Micro, vol. 35, no. 3, pp. 10–22, May 2015.
[Online]. Available: http://dx.doi.org/10.1109/MM.2015.42

[3] N. Oliver, R. R. Sharma, S. Chang, B. Chitlur, E. Garcia,
J. Grecco, A. Grier, N. Ijih, Y. Liu, P. Marolia, H. Mitchel,
S. Subhaschandra, A. Sheiman, T. Whisonant, and P. Gupta,
“A reconfigurable computing system based on a cache-coherent
fabric,” Reconfigurable Computing and FPGAs, International
Conference on, vol. 0, pp. 80–85, 2011. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ReConFig.2011.4

[4] Convey Personality Development Kit Reference Manual,
5th ed., © Convey Computer™ Corporation, 1302 East Collins,
Richardson, TX 75081, USA, April 2012. [Online]. Available:
http://www.conveysupport.com/alldocs/ConveyPDKReferenceManual.pdf

[5] B. Wile, “Coherent accelerator processor interface (capi)
for power8 systems,” IBM Systems and Technology Group,
September 2014. [Online]. Available: http://www.nallatech.com/wp-
content/uploads/CAPI POWER8.pdf

[6] Zynq-7000 All Programmable SoC Overview, 1st ed.,
Xilinx, Inc., January 2016. [Online]. Avail-
able: http://www.xilinx.com/support/documentation/data sheets/ds190-
Zynq-7000-Overview.pdf

[7] R. Ferreira, W. Denver, M. Pereira, S. Wong, C. A. Lisbôa,
and L. Carro, “A dynamic modulo scheduling with binary
translation: Loop optimization with software compatibility,” Journal
of Signal Processing Systems, pp. 1–22, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11265-015-0974-8

[8] R. Ferreira, J. G. Vendramini, L. Mucida, M. M. Pereira, and
L. Carro, “An fpga-based heterogeneous coarse-grained dynamically
reconfigurable architecture,” in Proceedings of the 14th International
Conference on Compilers, Architectures and Synthesis for Embedded
Systems, ser. CASES ’11. New York, NY, USA: ACM, 2011, pp. 195–
204. [Online]. Available: http://doi.acm.org/10.1145/2038698.2038728

[9] R. Ferreira, J. M. P. Cardoso, A. Toledo, and H. C. Neto, Data-
Driven Regular Reconfigurable Arrays: Design Space Exploration and
Mapping. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp.
41–50. [Online]. Available: http://dx.doi.org/10.1007/11512622 6

[10] J. M. P. Cardoso, Self-loop Pipelining and Reconfigurable Dataflow
Arrays. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 234–243. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
27776-7 25


