
From And-Inverter Graphs to Majority-Inverter Graphs

Felipe L. Machado, Vinicius N. Possani1,

Augusto S. Neutzling1
1PPGC, Institute of Informatics

UFRGS, Porto Alegre, Brazil

{flmachado, vnpossani, ansilva}@inf.ufrgs.br

Renato P. Ribas1, 2, André I. Reis1, 2
1PPGC / 2PGMicro, Institute of Informatics

UFRGS, Porto Alegre, Brazil

{rpribas, andreis}@inf.ufrgs.br

Abstract— In VLSI design, the adopted data structure to

perform logic synthesis has a direct impact in the software

scalability and also in the quality of the final chip, i.e., area,

power and delay. In the last decades different data structures

were explored during the logic synthesis phase, the most

commons are Directed-Acyclic Graphs (DAG), Binary-Decision

Diagram (BDD) and And-Inverter Graph (AIG). The most recent

approach presented in the literature was the Majority-Inverter

Graph (MIG), which is a potential data structure to the next

generation of logic synthesis CAD tools. In this sense, this work

presents an automated method to convert a circuit from an AIG

format to a MIG format. The trivial conversion performs a one-

to-one conversion, i.e., each AIG node is directly translated do a

MIG node. However, the proposed approach aims to find out

majority functions in an AIG in order to represent them into a

single majority node. Such a logic coupling, leads to a more

compact MIG representation. Our experimental results

demonstrate that the proposed method was able to achieve up to

53.89% of node count reduction compared to the trivial

conversion, with an average node reduction of 25.77%.

Keywords—VLSI degisn; logic synthesis; data structures;

graph; and inverter graph; majority inverter graph.

I. INTRODUCTION

The microelectronics evolution is supported by the
transistor scaling and enhanced CAD tools acting into the
Electronic Design Automation (EDA) field. The Very Large
Scale Integration (VLSI) design flow comprises many different
phases, starting from a Register Transfer Level (RTL)
description of the target design until achieve the final circuit
layout. In this context, the microelectronics CAD tools must
implement appropriated data structures to represent the circuit
design at each phase of the project. The adopted data structure
has a direct impact in the software scalability and also in the
quality of the final chip, i.e., area, power and delay. In this
work we are focusing in some data structures applied during
the logic synthesis phase of the VLSI flow.

Some well-known data structures adopted by academy
researchers and by the microelectronics industry to represent
logic networks are: Sum of Products (SOP) [4], Directed-
Acyclic graphs (DAG) [5], Binary-Decision Diagram (BDD)
[6] and And-Inverter Graph (AIG) [7-8]. In the last decades,
logic synthesis CAD tools migrated from Boolean networks
described as DAGs, where nodes represent logic gates of any
arbitrary logic function and edges represent interconnection, to
the AIG structure. The AIG is a homogeneous Directed

Acyclic Graph (DAG), where each vertex represents a 2-input
AND function and inversions are represented with
complemented attributes on the edges.

The most recent logic synthesis data structure presented in
the literature is called Majority-Inverter Graph (MIG) [1-3].
Similarly to the AIG, the MIG structure is a DAG where each
vertex represents a 3-input MAJ (majority function) and
inversions are represented in complemented edges. In the paper
[1], Amarú et al. present the formal definition of the MIG
structure together with a majority-based Boolean algebra to
perform logic optimization on top the MIG. The author present
a set of experiments demonstrating advances in different
criteria such as area, power and delay, for both the Application-
Specific Integrated Circuit (ASIC) and the Field-Programmable
Gate Array (FPGA) design flows.

Since new approaches, e.g., new data structures [1-3], are
potential candidates to be adopted by the industry and
academy, it is needed a gradual migration and adaptation of the
CAD tools, as well as, of the well-known benchmark sets. In
this context, the conversion from an AIG structure to a MIG
representation is one of the first steps of the migration process.
There is a trivial way to perform such conversion, where each
AIG node (2-input AND node) is directly converted to a MIG
node (3-input MAJ node) by set a constant value in one of the
three inputs of the MAJ node, i.e., MAJ(x, y, z) = AND(x, y)
when z = 0 and MAJ(x, y, z) = OR(x, y) when z = 1. By doing
that, we have a one-to-one conversion, where the obtained
MIG has the same number of nodes of the AIG representation.
However, it possible to explore the logic representativity of the
3-input MAJ nodes from MIG by finding out majority
functions in the AIG and merge each one in a single MAJ node
of the MIG structure.

In this sense, this work presents a method to translate a
circuit from an AIG structure to a MIG structure. The main
idea behind the method is to traverse the AIG in order to find
patterns that match with two different majority function
representations. The proposed approach delivers a more
compact MIG than the solution obtained by only applying the
one-to-one conversion. Such compactness can provide a good
start point for logic optimizations on top of the MIG structure
by applying the MIGhty synthesis tool presented in [1]. Our
experiments demonstrated up to 53.89% of reduction in the
node count when converting circuits from AIGs to MIGs, with
an average reduction of 25.77%.

The remainder of this paper is organized as follows. Section
II present some preliminary concepts and definitions. Section
III presents the proposed method. Our experimental results are
presented and discussed in the Section IV.

II. BACKGROUND

A. AND Inverter Graph (AIG)

And-Inverter-Graph (AIG), is a specific type of Directed
Acyclic Graph (DAG), where each node has either 0 incoming
edges – primary inputs (PI) – or 2 incoming edges – AND
nodes, as show in Fig. 1(a). Each edge can be complemented or
not. Some nodes are marked as primary outputs (PO) [7-8].

B. Three Input Majority Function (MAJ3)

The majority function is a three input function which
expression is:

MAJ(x, y, z) = x . y + x . z + y . z (1)

The majority function is symmetrical (i.e. any input
permutation gives the same function):

MAJ(x, y, z) = MAJ(x, z, y) = MAJ(y, x, z)

= MAJ(y, z, x) = MAJ(z, x, y) = MAJ(z, y, x)
(2)

Typically, Boolean functions are represented as expressions
using AND, OR and INV as operations. Any expression of such
form is trivially transformed into an equivalent majority
expression (i.e. using the majority function as basic element)
using the following relations:

AND(x, y) = MAJ(x, y, 0) (3)

OR(x, y) = MAJ(x, y, 1) (4)

C. Majority Inverter Graph (MIG)

MIG is also a specific type of Directed Acyclic Graph

(DAG), representing a homogeneous logic network with an

indegree equal to 3 and each node representing the majority

function, as shown in Fig. 1(b). In a MIG, edges are marked

by a regular or complemented attribute [1-3].

AND

AND AND

AND AND

x3

x1 x2

x4

x5 x6

f

MAJ

MAJ MAJ

MAJ MAJ

x3

x1 x2

x4

x5 x6 0

0 0

0

1

f

(a) (b)

Fig. 1. In (a) AIG and in (b) MIG representation of the

function f = (x1 . x2 . x3) + (x4 . x5 . x6).

D. Classes of Boolean Functions (NPN)

By considering a set of all functions with up to n variables,

these functions can be grouped in classes, as illustrated in

Fig. 2 [11]. Boolean functions can be grouped taking into

account the negation (x), and/or the permutation of variables

(y), and/or the negation of function value (z). For instance,

NPN-class corresponds to the set of distinct Boolean functions

obtained by permuting and complementing the input variables

and complementing the output [9].

Fig. 2. Types of Boolean equivalence used to group functions

in classes, image adapted form [11].

III. PROPOSED METHOD

The proposed method starts from an AIG structure and
aims to provide as output a MIG representation of the circuit.
As mentioned before, the proposed approach aims to avoid the
trivial one-to-one conversion from the entire AIG nodes to
MIG nodes. In this sense, in a first step the proposed method
traverse the AIG finding for majority function patterns and
convert each matched portion of the AIG to a single MAJ node.
In a second step, the method coverts all the remainder AND
nodes to MAJ nodes by considering the property presented in
(3). In the following subsection, we define the two
representative majority function patterns adopted in our
approach and the how the algorithm searches for such patterns
on top of the AIG.

A. 3-input MAJ patterns on AIG structures

The 3-input majority function can be implemented
according to the ISOP form described in equation (1). Thus, in
order to represent equation (1) in an AIG structure we firstly
convert the OR (+) operators into AND (.) operators by
applying the De Morgan’s Laws, resulting in the following
equation:

MAJ(x ,y, z) = !((!(x . y) . !(x . z)) . !(y . z)) (6)

Another alternative way to represent a 3-input majority
function is through the factored form of (1):

MAJ(x, y, z) = x . (y + z) + y . z (7)

Analogously, by applying the De Morgan’s Laws over (7)
it is possible to achieve the following representation expressed
only with 2-input AND and inversions:

MAJ(x, y, z) = !(!(x . !(!y . !z)) . !(y . z)) (8)

Figure 3 presents the AIG representations for the majority
function described in equations (6) and (8). In this work, we
called these two generic patterns present in Fig. 3(a) and

Fig. 3(b) as ISOP pattern (MAJISOP) and factored form patter
(MAJfac), respectively. It is important to mention that in both
patterns the inputs signal x, y and z can appear in any possible
permutation and/or in positive or complementary polarity.
Besides, the output of the MAJ can also appears in direct or
complementary polarity. In other words, since one of the
structural patterns presented in Fig. 3 is found on the AIG, the
algorithm check the NPN-equivalence of the inputs and output
to ensure an accurate matching.

AND

AND AND

AND AND

x x y z

y z

AND

AND AND

AND

y

x

z

y z

(a) (b)

Fig. 3. Two representative patterns for the 3-input MAJ: in (a)

and AIG obtained form (6) (MAJISOP) and in (b), AIG obtained

from (8) (MAJfac).

B. Finding for 3-input MAJ patterns on AIGs

The Algorithm 1 presents the proposed approach to find out
the majority function patterns, presented in Fig. 3, on top the
AIG. The algorithm starts from the primary outputs PO of the
AIG and for each PO the algorithm traverse the graph
recursively until reach the PIs. As the recursion returns the
algorithm tries to match portion of the graph with the MAJISOP
and MAJfac patterns. When there is a successful matching, the
makeMAJ procedure replaces the set of nodes S that represent
the majority function from the AIG by a single representative
3-input MAJ node.

Algorithm 1 Pseudocode of the pattern matcher routine.

 1: patternMatcher(currentNode)

 2: if currentNode == PI then // PI is the primary input set

 3: return

 4: endif

 5: for each node n in currentNode.inNodes do

 6: patternMatcher(n)

 7: endfor

 8: set < node > S ←

 9: matching ← checkISOPPattern(currentNode, S) // MAJISOP

10: if matching == false then

11: S ←

12: matching ← checkFactoredPattern(currentNode, S) // MAJfac

13: endif

14: if matching == true then

15: makeMAJ(S)

16: endif

17: end

Basically, the procedures checkISOPPattern and
checkFactoredPattern consider the currentNode as the root
node of the majority function, i.e., the root is the AND node at
the top of the patterns shown in Fig. 3. Thus, the algorithm

looks two levels ahead in order to check if the incoming nodes
respect the desired patterns. If there is a successful matching
the involved nodes are registered into the set S in order to
perform the AIG rewriting. Otherwise, no changes are done on
the graph and the algorithm returns one level back into the
recursion. The algorithm tries the matching again, until return
to the POs. The last step of the algorithm is convert the
remainder AND(x, y) nodes into MAJ(x, y, 0) nodes by set one
input of the majority node to zero. This last step is trivial so it
is not explicitly described in pseudocode.

IV. EXPERIMENTAL RESULTS

In order to evaluate the designed method, we perform a set
of experiments over the IWLS’05 Open Cores benchmark
circuits derived from the experiments performed in [1], which
are available to download in [10]. The motivation to use this
benchmark in our experiments is that such circuits were
derived from the MAJ-based synthesis tool MIGhty [1]. Thus,
it is expected that a large number of MAJ nodes can found in
the AIG description of such circuits. As the designed method
starts from and AIG structure, the first step was translate the
circuits available in [10] from Verilog to the AIG format. In the
sequence, the proposed approach was applied on top the AIG
in order to find out the sets of nodes that can be coupled into a
single MAJ node.

Our experimental results are summarized in Table I. From
the left to the right, the columns of the table present the
following information: benchmark circuit name; the number
nodes in the input AIG |AIG|; the number of majority functions
found in the factored form pattern shown in Fig. 3(b) |MAJfac|;
the number of MAJ node found in the ISOP form pattern
shown in Fig. 3(a) |MAJISOP|; the total number of MAJ nodes
|MAJ|, i.e., the sum of the two previous columns; the number
of AIG nodes that are covered by the found MAJ nodes
|MAJcov|; the resultant node count into the final MIG |MIG| and
finally, the perceptual reduction in the number of nodes.

As can be seen in the Table I, the proposed method was
able to find out a significant number of MAJ nodes in the input
AIGs. In the most part of the cases, the MAJ nodes were found
in the ISOP form. This result is strongly related (dependent) to
the structure of the input AIG. The |MAJcov| is defined as
follows:

|MAJcov| = |MAJfac| . 4 + |MAJISOP| . 5,

where 4 and 5 are the number of AIG nodes into the factored
and ISOP patterns. This way, the node count into the final MIG
is defined as follows:

|MIG| = |AIG| - |MAJcov| + |MAJ|,

where the set of AIG nodes covered by a given majority node
are replaced by a representative MAJ node.

For the evaluated circuits, the proposed approach was able
to find up to 53.89% of reduction in the node count when
converting circuits from AIGs to MIGs. On average, we
achieve 25.77% of node reduction. In is important to mention
that the proposed approach can be used to convert any circuit
described in an AIG format to a MIG description. Thus, the
obtained reductions can provide a good start point to apply a

MIG-based synthesis with the optimizations described in the
MIGhty [1] and other future synthesis method based on
majority functions.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented and automated method to find out
majority function patterns on top of AIG circuit representation,
allowing a compact conversion from AIG to the MIG
representation. A set of experiments was carried out the
representative benchmark of circuits. The proposed approach
was able to achieve significative reduction rate in the node
count when compared to a trivial one-to-one conversion of
nodes from the AIG to the MIG. As future works we intend to
investigate alternative optimizations on MIGs, based on the
MIG Boolean algebra defined in [1].

ACKNOWLEDGMENT

This work was supported in part by Brazilian founding
agencies CNPq, CAPES and FAPERGS.

REFERENCES

[1] L. Amarú, P. E. Gaillardon and G. De Micheli. "Majority-Inverter
Graph: A New Paradigm for Logic Optimization," in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 5, pp. 806-819, May 2016.

[2] L. Amarú, P. E. Gaillardon and G. De Micheli. “Majority-Inverter
Graph: A Novel Data-Structure and Algorithms for Efficient Logic
Optimization,” Proc. DAC’14.

[3] L. Amarú, P. E. Gaillardon and G. De Micheli. “Boolean Logic
Optimizationin Majority-Inverter Graph,” Proc. DAC’15.

[4] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-
Hill, New York, 1994.

[5] R. K. Brayton, et al. “MIS: A Multiple-Level Logic Optimization
System,” in IEEE Trans. CAD, 6(6): 1062-1081, 1987.

[6] R. E. Bryant. “Graph-based algorithms for Boolean function
manipulation,” IEEE TCOMP, C-35(8): 677-691, 1986.

[7] ABC synthesis tool - available online at
http://www.eecs.berkeley.edu/∼alanmi/abc/.

[8] R. K. Brayton, A. Mishchenko. “ABC: An Academic Industrial-Strength
Verification Tool,” Proc. CAV, 2010.

[9] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, "Fast Boolean
matching based on NPN classification," Proc. ICFPT'13.

[10] http://lsi.epfl.ch/MI

[11] U. Hinsberger and R. Kolla. “Boolean matching for large libraries,” in
Proc. Of Design Automation Conference (DAC), pp. 206-211, 1998.

TABLE I. SUMMARY OF RESULTS OBTAINED BY THE PROPOSED APPROACH WHEN PROCESSING THE BENCHMARK CIRCUITS FROM [10].

Benchmark |AIG| |MAJ| |MAJfac| |MAJISOP| |MAJcov| |MIG| % Node Reduction

vMIG.ac97_ctrl 13625 720 0 720 3600 10745 21.14

vMIG.aes_core 28991 2011 0 2011 10055 20947 27.75

vMIG.comp 26081 2096 199 1897 10281 17697 32.15

vMIG.des_area 5822 409 0 409 2045 4186 28.10

vMIG.des_perf 77454 2565 0 2565 12825 67194 13.25

vMIG.diffeq1 22857 1300 17 1283 6483 17657 22.75

vMIG.div16 9486 1278 0 1278 6390 4374 53.89

vMIG.DSP 50036 2462 6 2456 12304 40188 19.68

vMIG.ethernet 64251 1574 1 1573 7869 57955 9.80

vMIG.hamming 2871 200 0 200 1000 2071 27.86

vMIG.i2c 1163 48 0 48 240 971 16.51

vMIG.log2 38942 1916 12 1904 9568 31278 19.68

vMIG.MAC32 11654 582 0 582 2910 9326 19.98

vMIG.max 7790 895 0 895 4475 4210 45.96

vMIG.mem_ctrl 8407 316 0 316 1580 7143 15.04

vMIG.MUL32 12764 917 0 917 4585 9096 28.74

vMIG.mult64 30336 1141 0 1141 5705 25772 15.04

vMIG.pci_bridge32 23187 1146 0 1146 5730 18603 19.77

vMIG.pci_spoci_ctrl 1660 182 0 182 910 932 43.86

vMIG.revx 11040 884 3 881 4417 7504 32.03

vMIG.sasc 777 39 0 39 195 621 20.08

vMIG.simple_spi 1165 82 0 82 410 837 28.15

vMIG.spi 4197 215 0 215 1075 3337 20.49

vMIG.sqrt32 4616 615 0 615 3075 2156 53.29

vMIG.square 22007 1030 0 1030 5150 17887 18.72

vMIG.ss_pcm 597 50 0 50 250 397 33.50

vMIG.systemcaes 11215 417 0 417 2085 9547 14.87

vMIG.systemcdes 3513 265 0 265 1325 2453 30.17

vMIG.tv80 9597 550 0 550 2750 7397 22.92

vMIG.usb_funct 15827 708 0 708 3540 12995 17.89

vMIG.usb_phy 496 32 1 31 159 368 25.81

Average 16852.39 859.52 7.71 851.81 4289.87 13414.32 25.77

Stand. Dev. 18907.41 740.07 35.70 728.42 3688.10 16405.05 11.06

