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Variability in Nano-Scale Technologies

Electrical Behavior / Parameter Variation

Time Zero Time Dependent

Random:
RDF, LER, etc

Systematic:
Process 

Gradients, etc

Aging:
NBTI, HCI, 

Electrom., etc

Transient:
SET/SEU, Noise, etc

There are also environmental sources of variation:
Voltage, Temperature, etc.
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Issues in Nano-Scale Technologies
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Issues in Nano-Scale Technologies
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Issues in Nano-Scale Technologies

- VDD saturating at ≈ 1V due to non-scaling of sub-threshold slope.
- Increased Electric Field in Gate Dielectric and Semiconductor.
- Increased power density: Increased Temperature.
- High-K Oxides: Increased Trap Density.
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Discrete Charges and Traps

Useful numbers for some selected technology nodes.  Assumption: defect density=1011/cm2.
[Reisinger, 2014].
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BTI     x      RTN
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Low-Frequency Noise (RTN)

EF EF

Traps within a few kT from the Fermi Level
contribute to noise
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Charge Trapping Component of BTI: Stress

Transistor Off Transistor On

Traps Mostly Empty Traps Mostly Occupied

After a
“Long” Time

EF

EF
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Charge Trapping Component of BTI: Recovery

Transistor OffTransistor On

Traps Mostly EmptyTraps Mostly Occupied

After a
“Long” Time

EF

EF
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BTI  x  RTN

Traps that contribute to noise are the ones with

C  E

i.e., traps that keep switching state

Traps that contribute to NBTI are the ones with

C < E

i.e, traps that become occupied
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Modeling Approach

Based on Microscopic (Random) Quantities,
instead of distributed (homogeneous) quantities.

1. Charge trapping and de-trapping are stochastic events 
governed by characteristic time constants, which are 
uniformly distributed on a log scale.

2. Number of traps is assumed to be Poisson distributed.

3. Amplitude of the fluctuation induced by a single trap 
is a random variable. Studied by atomistic simulations 
(if needed, exponential distribution assumed).

4. Trap energy distribution is assumed to be U shaped
(key to explain the AC behavior).
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Some Advantages of our Approach
Talk Outline

1. Can be Applied to both DC and AC Large Signal
Excitation.

2. Can be Applied also for Transient Simulation.

3. Random Variables Lead to Statistical Model (Today 
Variability is a Major Issue). Applicable in Linear and 
Log Scale.

4. Can be Applied to Different Phenomena where Charge 
Trapping Plays a Role, such as Noise and NBTI.
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RTN Definition

In its simplest form, RTN is a 
Two-Level temporal 
fluctuation of a signal between 
a high and a low state.

This is characterized by a time 
in the high state (thigh), in the 
low state (tlow) and an 
amplitude (DI, DV, DR or DG).
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RTN Power
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RTN Power
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Behavior of Time Constants

Up and down time constants
follow a Poisson distribution
for simple two-level RTNs, 

given by:

ଵ
ଵ ଵ

with 1 the average value.
P1(t)dt the probability that the
high state 1 will not make a 

transition for time t,
then will make one in the

interval t and t+dt.4425 emission times, showing that it is
distributed exponentially.
τe=0.0528 s, standard deviation = 0.505 s.
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Trap Amplitude

C. T. Chan, H. C. Ma, C. J. Tang and T. Wang, VLSI Digest of tech. papers, p. 90 (2005).
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Trap Amplitude

Recovery traces after repeated stress pulses with tS= 10 ms and 10 s pulse length. Four 
different defects (named A, B, F, G) with different capture and emission time constants and 
step heights are charged. For the given gate area, ΔVth after the charge sheet approximation 
is 1 mV, the resolution is about 0.2 mV [Reisinger, 2014].
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The Time-Dependent Defect Spectroscopy

GRASSER, 2010
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Time Constants and Tunneling
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Trap Amplitude

NBTI step heights measured on 72 devices shows a clear exponential distribution. 
The average Vth shift η is 4.75±0.30 mV in the pFETs with metallurgic length L = 
35 nm, width W = 90 nm, and HfO2 dielectrics with EOT = 0.8 nm.
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RDF: Random Dopant Fluctuations

Today, Each 
Transistor is 

Different

In the past all 
transistors 

were similar 
because of 

self 
averaging
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Drain Current Fluctuations For Different RDF 
Configurations

As a function of the trap position 
along the channel length

As a function of the trap depth 
into the oxide
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Drain Current Fluctuations For Different RDF 
Configurations and Trap Positions

Different RDF, different trap position along the channel length (L), width (W) 
and different trap depth into the oxide: Exponential Distribution
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Low-Frequency Noise

• Frequency Domain Modeling (DC)
• Noise due to a Single Trap
• Noise due to the Ensemble of Traps

• AC Large Signal Excitation

• Time Domain (Transient) Analysis and 
Simulation
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Evaluating the Noise Power due to One Trap

• Poisson Process
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Evaluating the Noise Power due to One Trap

• The autocorrelation is given by

• And the power spectrum density (Fourier 
Transform) is a Lorentzian

+ Singular term 

It is not important
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RTN: Random Telegraph Noise
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Evaluating the Noise Power due to Many Traps

S(f) =  
i=1
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Evaluating the Noise Power due to Many Traps

• Superposition of Lorentzians

• Averaging on many variability sources
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Evaluating the Noise Power due to Many Traps

• Average Value

• Standard Deviation

< S (f) > = 
<A2> Ndec WL

 f  
π
 2  

σ S(f)
 < S (f) > = 

2 
 π Ndec WL 

 
<A4>

 <A2>2 

G Wirth et al. IEEE Trans Electron Dev, 2005
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Average Value and Variability

Frequency [Hz]
100 101 102 103 104 105G

a
te

 r
e

fe
rr

e
d

 v
o

lta
g

e
 n

o
is

e
[V

H
z-1

/2
]

10-8

10-7

10-6

10-5

10-4

10-3

n-MOS, W / L = 25µm / 0.25µm
Vd = 1.0V, Vg,eff = 0.5V



35 Gilson Wirth.

Average Value and Variability
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Average Value and Variability

Frequency [Hz]
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Variability Scaling
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How to statistically describe the noise?

ூವூವ
is normally distributed!
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How to statistically describe the noise?
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Dependence of ID Fluctuations on Trap 
Position. Conventional TCAD,  Halo, Long Dev.
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Dependence of ID Fluctuations on Trap 
Position. Conventional TCAD,  Halo, Long Dev.

Vgs = 0.5 V and Vds = 0.1 V
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Variability: Dependency on Frequency
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Low-Frequency Noise

• Frequency Domain Modeling (DC)
• Noise due to a Single Trap
• Noise due to the Ensemble of Traps

• AC Large Signal Excitation

• Time Domain (Transient) Analysis and 
Simulation
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Switched Bias: Modulaton Theory

Klumperink et al., IEEE J. SOLID-STATE CIRC, VOL. 35, NO. 7, 2000



Noise Produced by Interface States
• LF-noise of MOSFETs is generated by trap-states at the Si/SiO2

interface which are randomly charged and discharged in time

• This leads to modulation of both local mobility and number of free 
carriers in the channel

• Probability of a trap state to switch its occupation level depends on 

the energetic position of the local Fermi level



Trap State and Fermi Level at Vgs,on

The Energy difference
between the Fermi Level
and the Trap Level
depend on bias (time)



Trap State and Fermi Level at Vgs,off

The Energy difference
between the Fermi Level
and the Trap Level
depend on bias (time)



Trap State at Switched Bias Operation



Noise Spectra for a Single Trap under
Cyclo-Stationary Excitation
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Noise Spectra for a Single Trap under Square 
Wave Excitation
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Noise Reduction under Cyclo-Operation

• Modulation theory predicts four times noise reduction for CS operation 
• Noise reduction is larger and in good agreement to the proposed 

model.
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Normalized Variability of Noise Behavior

Variability is seen to increase under
Cyclo-Stationary Operation.
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Low-Frequency Noise

• Frequency Domain Modeling (DC)
• Noise due to a Single Trap
• Noise due to the Ensemble of Traps

• AC Large Signal Excitation

• Time Domain (Transient) Analysis and 
Simulation
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RTN and Time Domain

VT Fluctuations
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Possible Simulation Methodologies

DVT
DVT

Change dVt at 
instantiation Verilog-A wrapper to

Trans. model

Static
Dynamic

Change transistor 
Model equations

Ids = … + f(delvto(t))
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RTN: Transient Simulation (1)

• Charge trapping and de-trapping are stochastic events, 
governed by capture and emission time constants, c and e, 
which are uniformly distributed on a log-scale;

• the number of traps (Ntr) is assumed to be Poisson 
distributed, and the average number of traps (parameter of 
the Poisson) is assumed to be proportional to the channel 
area; 

• trap energy distribution, g(ET), is assumed to be U-shaped;

• the amplitude of the VT fluctuation induced by a single trap, 
is a random variable given by atomistic device simulations.
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RTN: Transient Simulation (2)

• At each simulation time step, it is checked if a trap 
changes state.

• Trap switching probability is evaluated based on the 
device bias point at each transient simulation step.

• If one or more trap change state, transistor threshold 
voltage is changed accordingly.

• Simulators do not support this kind of simulation:
• ngspice and BSIM4 code modified.
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VT Fluctuates Over Time
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Transient Simulation of Ring Oscillators
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Period Jitter

• Period Jitter
– Period Jitter is the difference between a clock period

and the ideal clock period (it can occur after or
before the ideal transition).
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Statistical Simulation Results

Minimum 3.6784E-11

Máximum 3.8338E-11

Mean 3.7370E-11

Std Deviation 2.06329E-13

Distribution is skewed
(not Gaussian) 
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Phase Noise: Up-converted 1/f Noise
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RTN and SRAM

Source: M Agostinelli et al. (Intel), IEDM 05

Vmin on some SRAM arrays varied from one measurement to 
the next (90nm node).
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Comments

 Pros
 Properly implements the physical-based equations into a 
circuit simulator
 Computationally efficient (minor impact on the run time of the 
transient simulation)
 Easy to use: Transparent for the circuit designer (no change 
needed in the netlist).
 Monte Carlo “by its nature”.

 Cons
 Changes made on simulator source code: time intensive 
work, and restriction to access proprietary code (HSpice, 
Spectre, etc.)
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Outline

• Our Modeling Approach for Charge Trapping

• Low-Frequency Noise:
• Frequency Domain Models (DC and AC Large Signal)

• Time Domain Analysis and Simulation

• NBTI: Charge Trapping Component

• Amplitude of the DVT Induced by a Trap

• Conclusion



Modeling Approach
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BTI: Bias and Temperature Stress

PFET Vth at Negative gate Bias (and typically at elevated 
Temperature) starts shifting (shows Instability)  NBTI

Charging of interface and oxide defects  ΔVth and Δμ
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BTI: Bias and Temperature Stress

ID x VG Hysteresis [Kerber et al, 2004]
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BTI: Stress and Recovery
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NBTI: Charge Trapping Component

Huard et al.,
IRPS 2008
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NBTI: Charge Trapping Component

Characteristic ΔVth transients of a single 70×90 nm2 1 nm-SiO2/1.8nm-HfSiO nMOSFET
device stressed at 25 ºC and VG = 2.8 V for 184 ms. Four discrete drops are observed 
indicating the existence of four active traps at the stress condition [Kaczer, 2014].



Modeling Approach
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NBTI: Temperature Dependence
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Model for the Charge Trapping Component

G Wirth et al, IEEE TED 2011
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Normalized standard deviation of the BTI 
induced VT shift

G Wirth et al, IEEE TED 2011

: Model
: MC Simulation



Motivation

To propose a Unified Model for DC and AC Bias 
Temperature Instability.

The model should be based on first principles
able to model both short term (cycle-to-cycle or 
ripple) and long term (“permanent”) components 
of AC BTI.

Model equations should be simple and ease to 
implement in simulation tools.



Fast and Slow Traps

DVT,Total = DVT,Slow +DVT,Fast

0 5000 10000 15000 20000 25000
0,00

0,02

0,04

0,06

0,08

D
V

T
,T

o
ta

l (
a

.u
)

Time (a.u.)

DVT,Fast

DVT,Slow



Fast Traps
Transistor Off Transistor On

Fast Traps Mostly Empty Fast Traps Mostly Occupied

At the End of
Stress Semi-Cycle
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Relevant Trap Time Constant: τC,On



Fast Traps
Transistor OffTransistor On
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Recovery Semi-Cycle
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Slow Traps

Traps are too slow to follow bias point change.
Equivalent Time Constants

<1/c>=(/c,stress+(1-)/c,recovery)

<1/e>=(/e,stress+(1-)/e,recorery)
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Fast and Slow Traps

Stress followed by Recovery.
Stress of 500 time units, followed by 500 time units of Recovery.

Please note that Recovery is shifted by 500 time units in the Time axis, so that start 
of both Stress and Recovery correspond to time equal to zero. 
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Slow Traps
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Slow Traps
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Fast Traps

DVT,Fast = [kC+kFlog(TS)] *[ (log(α+kA)+log(1-α+kA)]

Figure from
J. Martin-Martinez et al., IRPS 2011



Fast Traps

DVT,Fast = [kC+kFlog(TS)] *[ (log(α+kA)+log(1-α+kA)]

Figure from
D S Ang et al

IEEE TDMR
pp.19,  March 2011



Fast Traps
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Circuit Activity (Duty Cycle) Dependence
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Simulation of Both RTN and BTI
Read Input Files

Configuration File;
Circuit Netlist;

Modelcard;

Define Number Of Traps For Each Device

Define Trap Properties For Each Trap

Evaluate Trap State In The Beginning Of 
The Spice Simulation

Re-write The Spice Netlist With The Traps 
Information

Run Enhanced Spice Simulation

Analyze and store the simulation results

I ≥ Monte ?

I++

End

Y

N

Adjust the time constants according to the 
environment conditions

(e.g. temperature and bias point)

Calculate the probability of each trap to change its 
state (populated or not)

Generate a random number and compare to the 
probability

If the state have changed 
refresh the Vth

For Each trap

(a) (b)
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Simulation of Both RTN and BTI
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Simulation of Both RTN and BTI

Inverter power and delay after 10-8s and 108s of stress (250 MHz clock)
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Simulation of Both RTN and BTI
at System Level

Must properly predict duty cycle, etc.
SSTA assumes Gaussian Distributions
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Simulation of Both RTN and BTI
at System Level: Case Study
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Q-Q plot of  normalized delay after 104s
(a) Path 1           (b) Path 2
Considering time zero variability

(a) (b)

Simulation of Both RTN and BTI
at System Level: Case Study
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Autocorrelation Analysis 

Calculates how the random variable ூವ
relates to the random 

variable ூವ
.

If the noise spectra were perfectly 1/f, then the correlation coefficient 
would always be equal to 1.
Sensitive to the frequency dependence of the fundamental noise 
sources underlying the LFN



98 Gilson Wirth.

Autocorrelation Analysis 
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Autocorrelation Analysis 

Vୈୗ = 50 mV
Vୋୗ = 1.1 V

Intertwining! (Shuffling)

LARGE Area NFET ଶ(40-nm)
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Autocorrelation Analysis 

SMALL Area PFET   ଶ (40-nm)
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Autocorrelation Analysis 

LARGE Area PFET     ଶ(40-nm)
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Temperature Autocorrelation

102

ୈୗ

ୋୗ

 

 

𝜏 = 𝜏 ⋅ exp 𝑧/𝑧 +
𝐸

𝑘𝑇
⋅

𝛽

1 + 𝛽

Strong temperature
dependence indicate
thermal activation!

Thermal activation fits. 
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Time Constants and Tunneling

Tunneling front calculations for various dielectric fields and for pure SiO2(a) and 
25% N SiON (b).

Time constants are inconsistent with elastic tunneling [Campbell et al, 2009].
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Conclusion

A microscopic, statistical modeling approach for 
charge trapping is presented.
It is applied to study the role of charge trapping 
and de-trapping in Noise and BTI.
Mutual relation between different reliability 
phenomena (LF noise, BTI and RDF) is 
discussed.
The modeling approach may be applied for time 
domain (transient) or frequency domain analysis.
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