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Variability in Nano-Scale Technologies

Electrical Behavior / Parameter Variation

l

Time Zero

l l

Time Dependent
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l

Aging:
NBTI, HCI,
Electrom., etc

Transient:
SET/SEU, Noise, etc

There are also environmental sources of variation:
Voltage, Temperature, etc.

Random: Systematic:
RDEF, LER, etc Process
Gradients, etc
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Issues in Nano-Scale Technologies
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Issues in Nano-Scale Technologies
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Issues in Nano-Scale Technologies
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Vp saturating at = 1V due to non-scaling of sub-threshold slope.
Increased Electric Field in Gate Dielectric and Semiconductor.
Increased power density: Increased Temperature.

High-K Oxides: Increased Trap Density.
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Discrete Charges and Traps

Technology node 1um 100nm 40nm 16nm
VDD (V) 33 1.2 1 0.8
width = length in (um) 1 0.1 0.04 0.016
EOT /nm 10 2.2 1 1
specific capacitance (C/nF/cm?) 345 1568 3450 3450
oxide capacitance Cox (F) 3.45E-15 1.57E-16 5.52E-17 8.83E-18
Eox atVDD (MV/cm) 3.3 5.5 10.0 8.0
number of carriers in channel at Eox=5MV/cm 71E+04 1.2E+03 345 44
number of active defects 1000 10 1.6 0.3
AVt for single carrier (mV) 0.05 1.0 29 18.1

Useful numbers for some selected technology nodes. Assumption: defect density=10'!/cm?.

[Reisinger, 2014].

Al/z‘h — q/Cox
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Low-Frequency Noise (RTN)

O
R
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Q- F

Traps within a few kT from the Fermi1 Level
contribute to noise
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Charge Trapping Component of BTI: Stress
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Charge Trapping Component of BTIl: Recovery

Transistor On Transistor Off
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BTl x RTN

Traps that contribute to noise are the ones with
Te = T
1.e., traps that keep switching state

Traps that contribute to NBTI are the ones with

Tc<Tg
1.e, traps that become occupied
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Modeling Approach

Based on Microscopic (Random) Quantities,
instead of distributed (homogeneous) quantities.

1. Charge trapping and de-trapping are stochastic events
governed by characteristic time constants, which are
uniformly distributed on a log scale.

2. Number of traps is assumed to be Poisson distributed.

3. Amplitude of the fluctuation induced by a single trap
is a random variable. Studied by atomistic simulations
(if needed, exponential distribution assumed).

4. Trap energy distribution is assumed to be U shaped
(key to explain the AC behavior).
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Some Advantages of our Approach
Talk Outline

1. Can be Applied to both DC and AC Large Signal
Excitation.

2. Can be Applied also for Transient Simulation.

3. Random Variables Lead to Statistical Model (Today
Variability is a Major Issue). Applicable in Linear and
Log Scale.

4. Can be Applied to Different Phenomena where Charge
Trapping Plays a Role, such as Noise and NBTI.
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In 1ts stmplest form, RTN 1s a
Two-Level temporal
fluctuation of a signal between
a high and a low state.

This 1s characterized by a time
in the high state (t;;.,), in the
low state (t,,,,) and an
amplitude (AL, AV, AR or AG).
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RTN Power
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Sld| |
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RTN Power

[
210
> |
[e}
Z

10° ‘

10" 10° 10°
Beq
Noise PSP as a function of 3 = 1./ T, For =1 noise PSD i1s maximum.
2
s B
Sl.(a))z i eq 1 1

2 (1+,Beq)2 @; 1+(a)/a)l-)2

17 Gilson Wirth. &

UFRGS



Behavior of Time Constants

Up and down time constants
follow a Poisson distribution
for simple two-level RTNs,
given by:

it
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1 t
P,(t) = T—eXp (_a)

Yo Relohve freguency
P
=
=

1
ik
J B with 7, the average value.
M P, (t)dt the probability that the
. - L — 3 high stat§ ‘1 will ngt make a
Emission (down) fime {s] transition for time t,
then will make one in the
4425 emission times, showing that it 1s interval t and t+dt.
distributed exponentially.
1,=0.0528 s, standard deviation = 0.505 s. P, ,(At) = At/T1y
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Trap Amplitude
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C. T. Chan, H. C. Ma, C. J. Tang and T. Wang, VLSI Digest of tech. papers, p. 90 (2005).



Trap Amplitude
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Recovery traces after repeated stress pulses with t= 10 ms and 10 s pulse length. Four
different defects (named A, B, F, G) with different capture and emission time constants and
step heights are charged. For the given gate area, AV, after the charge sheet approximation
is 1 mV, the resolution 1s about 0.2 mV [Reisinger, 2014].
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The Time-Dependent Defect Spectroscopy

10

AV, [mV]

[y ]

o

Ma

Step Height [mV]

GRASSER, 2010

=k

10° 107 10
Emission Time [s]

21 Gilson Wirth. &

UFRGS



Time Constants and Tunneling
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occurrence
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NBTI step heights measured on 72 devices shows a clear exponential distribution.
The average V,, shift  1s 4.75+0.30 mV 1in the pFETs with metallurgic length L =

35 nm, width W = 90 nm, and HfO, dielectrics with EOT = 0.8 nm.

Urnvs



RDF: Random Dopant Fluctuations
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Drain Current Fluctuations For Different RDF
Configurations
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Drain Current Fluctuations For Different RDF
Configurations and Trap Positions
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Low-Frequency Noise

* Frequency Domain Modeling (DC)

* Noise due to a Single Trap

* Noise due to the Ensemble of Traps
* AC Large Signal Excitation

* Time Domain (Transient) Analysis and
Simulation
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Evaluating the Noise Power due to One Trap

e Poisson Process
dl

p(0— 1)dt = —  (capture)
TC,
_ dt .
p(l1 — 0)dt = — (emittion)
Tf'__f
. g l
average time in state 1 = (t); = 7. = — [ texp(—t/7.)dt
T
. l
average time in state 0 = (t), = 7. = — |, texp(—t/7.)dt
Te'
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Evaluating the Noise Power due to One Trap

e The autocorrelation is given by

 And the power spectrum density (Fourier
Transform) is a Lorentzian

: 0 | .
S(w) = —— 5 +(Singular term
(fr_': + 4'!'_':') (L _i_ i) + :.L:Iz

It 1s not important
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RTN: Random Telegraph Noise

S(log)
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Evaluating the Noise Power due to Many Traps
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Evaluating the Noise Power due to Many Traps

e Superposition of Lorentzians

\fr \h

S(f,w1,...,wn,,, A1, ..., An,,) Z Si( Z ,12{%‘ ! 5
i Yilg (5)

e Averaging on many variability sources
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number of traps per F 1
I',H__ T1) X 1_}-
sample is Poisson distributed <
. 1 Wmax 1
j“ i) = lll ( Wmin B
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Evaluating the Noise Power due to Many Traps

e Average Value
2
<A“> Ndec WL T
f 2

<S{)>=

e Standard Deviation

°S( A2 <A
<S(f)> T[\/Ndec WL <A2>2

33 Gilson Wirth. &

UFRGS



Average Value and Variability

3
10 i n-MOS, W/L =25um/0.25um

V,=1.0V,V,__ =05V

g,eff

104 -

Gate referred voltage noise

10° 10" 102 10® 10* 10°
Frequency [HZz]

34 Gilson Wirth. &

UFRGS



Average Value and Variability
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Average Value and Variability
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Variability Scaling
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How to statistically describe the noise?

QQ Plot of Sample Data versus Standard Normal
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How to statistically describe the noise?

e o|ln S;4] should not Vas = 0.1V, Vps = 1.4
and does not follow a

-

dependence.

o[In(S,(1)]= \/m(”%
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Dependence of I Fluctuations on Trap
Position. Conventional TCAD, Halo, Long Dev.
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Dependence of I Fluctuations on Trap
Position. Conventional TCAD, Halo, Long Dev.
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Variability: Dependency on Frequency
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Low-Frequency Noise

* Frequency Domain Modeling (DC)

* Noise due to a Single Trap

* Noise due to the Ensemble of Traps
* AC Large Signal Excitation

* Time Domain (Transient) Analysis and
Simulation

43 Gilson Wirth \(’
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Switched Bias: Modulaton Theory

we can expect for 50% duty cycle, as the switching operation
can be represented as a multiplication of the 1/ f noise current
with a square-wave signal with 50% duty cycle, m(t), as fol-

lows:
1 2 . 2 . 2 .

m(t) = —+—slll Wspt+ - sill Jwswt+—— Sl dwsyt+-- .
2 0w S 5%

(1)
In the frequency domain this corresponds to a convolution of the
PSD of the 1/f noise with a spectrum with delta functions at
dC, Wsuw» SWsr» KWy, €1C. The de-term determines the resulting
noise power in baseband, which is (1/2)? (or —6 dB) compared
to the original 1/ f noise power.

Klumperink et al., IEEE J. SOLID-STATE CIRC, VOL. 35, NO. 7, 2000
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Noise Produced by Interface States

* LF-noise of MOSFETs is generated by trap-states at the Si/SiO,
interface which are randomly charged and discharged in time

7

4
ﬂ i

* This leads to modulation of both local mobility and number of free
carriers in the channel

» Probability of a trap state to switch its occupation level depends on
the energetic position of the Fermi level




Trap State and Fermi Level at V

gs,on

Gate voltage applied to the device
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Vgs,off
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E
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Trap State and Fermi Level at V

gs,off

Gate voltage applied to the device
o Vgs,on

Vgs,off

The Energy difference
between the Fermi Level
and the Trap Level
depend on bias (time)

Gate |Oxide ! Substrate




Trap State at Switched Bias Operation

Gate voltage applied to the device
. Vgs,on

Gate |Oxide , Substrate




Noise Spectra for a Single Trap under
Cyclo-Stationary Excitation

1

Beq = <1/ >/<l/1>, with <e>= (1/T) /;" o dt

w, =<l/t>+<1/t>

For Switching Frequency >> w,




Noise Spectra for a Single Trap under Square
Wave Excitation

<l/z>=(alt,,,+(l-a) /Taoﬁ)

<l/z>=(alz,,,+ (1-a) /Te’oﬁf)




Noise Reduction under Cyclo-Operation
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* Modulation theory predicts four times noise reduction for CS operation
* Noise reduction is larger and in good agreement to the proposed
model.




Normalized Variability of Noise Behavior
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Low-Frequency Noise

* Frequency Domain Modeling (DC)

* Noise due to a Single Trap

* Noise due to the Ensemble of Traps
* AC Large Signal Excitation

* Time Domain (Transient) Analysis and
Simulation
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RTN and Time Domain
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Possible Simulation Methodologies

Static

4|

Change dVt at

|

-

AV,

instantiation
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Verilog-A wrapper to

Trans. model

Dynamic

|
]

Ids = ... + f(delvto(t))

Change transistor
Model equations
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RTN: Transient Simulation (1)

* Charge trapping and de-trapping are stochastic events,
governed by capture and emission time constants, 7, and 7,
which are uniformly distributed on a log-scale;

* the number of traps (/V,,) 1s assumed to be Poisson
distributed, and the average number of traps (parameter of
the Poisson) 1s assumed to be proportional to the channel
area;

* trap energy distribution, g(E ), 1s assumed to be U-shaped;

* the amplitude of the V fluctuation induced by a single trap,
1s a random variable given by atomistic device simulations.
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RTN: Transient Simulation (2)

e At each simulation time step, it is checked if a trap
changes state.

* Trap switching probability is evaluated based on the
device bias point at each transient simulation step.

* If one or more trap change state, transistor threshold
voltage is changed accordingly.

e Simulators do not support this kind of simulation:
* ngspice and BSIM4 code modified.
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V; Fluctuates Over Time
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Transient Simulation of Ring Oscillators
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Period Jitter

 Period Jitter

— Period Jitter is the difference between a clock period
and the ideal clock period (it can occur after or
before the ideal transition).

I Ideal Period l
r* g
I |
i
:: i |deal transition
iilii point
LiliJ
 nd
Period-Jitter
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Statistical Simulation Results

250 -

2007 Minimum 3.6784E-11
c Maximum 3.8338E-11
S 150 4 Mean 3.7370E-11
2 Std Deviation ~ 2.06329E-13
@
0 100 -

Distribution is skewed
50 - (not Gaussian)
0_
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Phase Noise: Up-converted 1/f Noise

carrier

phase noise
~100dBc/Hz

Gilson Wirth.
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RTN and SRAM

0.8 -
0.7 -
0.6 | [yt
0.5 . | | | |

0 300 600 900 1200 1500

Time [s]

Vmin [V]

Vmin on some SRAM arrays varied from one measurement to
the next (90nm node).

Source: M Agostinelli et al. (Intel), IEDM 05
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Comments

« Pros
« Properly implements the physical-based equations into a
circuit simulator
« Computationally efficient (minor impact on the run time of the
transient simulation)
« Easy to use: Transparent for the circuit designer (no change
needed in the netlist).
« Monte Carlo “by its nature”.

. Cons
« Changes made on simulator source code: time intensive

work, and restriction to access proprietary code (HSpice,
Spectre, etc.)
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Outline

* Our Modeling Approach for Charge Trapping

* Low-Frequency Noise:
* Frequency Domain Models (DC and AC Large Signal)
* Time Domain Analysis and Simulation

 NBTI: Charge Trapping Component
- Amplitude of the AV, Induced by a Trap

e Conclusion
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current

Modeling Approach
.?.?. @ .?. .?:) i:lec‘ric

Semiconductor

— V Positive: PBTI
A V Negative: NBTI
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time
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BTI: Bias and Temperature Stress

v 25
DD OV
20
> negative V,—{[— 0V
—[ £ 15| 4 ©
oV Voo = oV
= 3 10 T=125°C
_Iﬁ | V, =-2V
5T G,stress
— " r - .
0 500 1000 1500 2000
time (s)

PFET Vi at Negative gate Bias (and typically at elevated
Temperature) starts shifting (shows Instability) > NBTI
Charging of interface and oxide defects > AVwmand Ay
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BTI: Bias and Temperature Stress

200 ' T T T T T T T T T
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BTI: Stress and Recovery
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20 | i
> stress relaxation
£ 15}
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(Vig=V o)Al /15o[V]

BTI: Stress and Recovery
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NBTI: Charge Trapping Component

44 I Measurement uncertainty (+/- 30)
6 — S 42 }
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Figure 7: Recovery of Vyp shifts for several SRAM-sized devices
showing the discrete nature of detrapping events. The inset shows
that there are no intermediary values between steps in spite of the
small measurement step time (shaded area represents the
measurement uncertainty (+/- 36).

Huard et al.,
IRPS 2008
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NBTI: Charge Trapping Component

21" Temp = 25C
Vsrress ™ 2.7V,
OF tstress=189ms

I L llllIlII L1l I 1 llllllll 1 llllllll L 1 I

0.001 0.01 0.1 1 10 100
Relaxation Time (s)

Threshold voltage shift x10'3 (V)

Characteristic AV, transients of a single 70x90 nm? 1 nm-SiO,/1.8nm-HfSiO nMOSFET
device stressed at 25 °C and V;=2.8 V for 184 ms. Four discrete drops are observed
indicating the existence of four active traps at the stress condition [Kaczer, 2014].
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Modeling Approach
< AVr(t) >=< 0 > (n(t))

Ntre—N

© N
(@) = Por (i 100 ).

Ntr=0 Ntr!

_ N ( fE g(Er)dEy )( j“’"”"“"t (e™*—1) du)
In10 (Prnax — Pmin) \Jgy 1+ e~(Er—EF)/kpT 10~pmi ¢ u

N = N Py1(t¢, Tes 1)

(n(t)) ~ @(T,Er)(A + B log(t))



NBTI: Temperature Dependence
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Model for the Charge Trapping Component
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Normalized standard deviation of the BTI
_Induced Vshift
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Motivation

To propose a Unified Model for DC and AC Bias
Temperature Instability.

The model should be based on first principles
able to model both short term (cycle-to-cycle or

ripple) and long term (“permanent”) components
of AC BTL.

Model equations should be simple and ease to
implement 1in simulation tools.



Fast and Slow Traps

4 K .
AV
5 | T,Fast
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Time (a.u.)

AVT,Total = AVT,Slow +AVT,Fast



Fast Traps

Transistor Off Transistor On

O O b
O > ) F
O At the End of ‘
O Stress Semi-Cycle O

EF —— Q - ——— ‘
O O

Fast Traps Mostly Empty Fast Traps Mostly Occupied

Relevant Trap Time Constant: TC,0n



Fast Traps

Transistor On Transistor Off
S E > =
@ ) O
O At the End of O
‘ Recovery Semi-Cycle O
2 g
Fast Traps Mostly Occupied Fast Traps Mostly Empty

Relevant Trap Time Constant: T, o
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Slow Traps
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Traps are too slow to follow bias point change.
Equivalent Time Constants
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Stress followed by Recovery.
Stress of 500 time units, followed by 500 time units of Recovery.
Please note that Recovery is shifted by 500 time units in the Time axis, so that start
of both Stress and Recovery correspond to time equal to zero.



Slow Traps

AVT,SIow (a.u)

10° 10°

Time (a.u)

AV 1510w = Ks- [log(a+ k,)-log(1-a+ k)] .log(t)



Slow Traps

0,00~

00 02 04 06 08 10
Duty Cycle
AV 1510w = K- [log(0+ ky)-log(1-0+ k)] log(t)



Fast Traps

Stress time (s)

Figure from
J. Martin-Martinez et al., IRPS 2011

AVT,Fast = [kc"'kFlOg(Ts)] *[ (log(at+k,)tlog(l-at+k,)]
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Fast Traps
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AV 1 past = [KctKplog(Tg)] *| (log(a+k,)+log(1-0+k,)]



AV Total
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Monte Carlo Simulation: “Permanent” component



Body Biasing
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Circuit Activity (Duty Cycle) Dependence

¢ : Measurement
= : Model

® : M(C Simulation

02 04 06 08 1
Duty Cycle
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Simulation of Both RTN and BTI

Configuration File;
Circuit Netlist;
Modelcard;

Read Input Files >

\V/

For Each trap

Adjust the time constants according to the
environment conditions
(e.g. temperature and bias point)

jEu

Calculate the probability of each trap to change its
state (populated or not)

Generate a random number and compare to the
probability

v

If the state have changed
refresh the Vth

91 Gilson Wirth.
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(b)

Define Number Of Traps For Each Device

Define Trap Properties For Each Trap

Evaluate Trap State In The Beginning Of
The Spice Simulation

v

Re-write The Spice Netlist With The Traps
Information

Run Enhanced Spice Simulation

Analyze and store the simulation results

End

$
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Simulation of Both RTN and BTI

Time (a.u.)
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Simulation of Both RTN and BTI

§ 1.4
o 1.3
B
T .
N 121 ¢ =10%s
5
EH { =108
= &

:: £ ]

1.0

0.9

0 1 2 9 4 5

normalized delay

Inverter power and delay after 10-%s and 10%s of stress (250 MHz clock)
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Simulation of Both RTN and BTI
at System Level

Levelized Netlist

.. . (‘lﬂte F . -----

Level (1)

NBTI timing degradation analysis algorithm:
Input: circuit netlist, input signal probability; slew rate
Output: Delay

01: FOR each gate in level i

02:
03:
04:
05:
06:
07:
08:
09:
10:
11:

identify input signals

load signal information: duty cvele , slew rate
identify gate fanouis

calculate gate load capacitance

calculate gate intrinsic delay

calculate gate delay degradation caused by NBT1
calculate duty cyvcle for output signals

calculate slew rate for output signals

update information for output signals

set output signals as inputs for level (i+1)

12: END FOR

94 Gilson Wirth.

Statistical Std. Cell

: Calculation Fitting constant h
Library

|

Calculate NBTI-aware Delay
Distribution Model

l

Ad,iUSl M fresy Breshi IO aged Sged;

l

NBTI-aware Statistical Std. Cell Library

Netlist —* SSTA

Must properly predict duty cycle, etc.
SSTA assumes Gaussian Distributions

$
UFRGS



Simulation of Both RTN and BTI
at System Level: Case Study
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Simulation of Both RTN and BTI
at System Level: Case Study

QQ Plot of SPICE Data versus SSTA Data QQ Plot of SPICE Data versus SSTA Data
_ 11p
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SSTA Normal Quantiles S8TA Normal Quantiles

(a) (b)

Q-Q plot of normalized delay after 10%s

(a) Path 1 (b) Path 2
Considering time zero variability
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Autocorrelation Analysis

» Calculates how the random variable §; (f) relates to the random
variable S; (f + Af).

» |If the noise spectra were perfectly 1/f, then the correlation coefficient
would always be equal to 1.

*» Sensitive to the frequency dependence of the fundamental noise
sources underlying the LFN

Power Spectral Density
Power Spectral Density

10" 102 108 104 10
Frequency (Hz) Frequency (Hz)

=y
o
(=]
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Autocorrelation Analysis

Vg =01V
Vst

SID/IIZD (Hz™')
)
o

10 0° 10° 10 10°
Frequency (Hz)

SMALL Area NFET 0.3 X 0.04pum? (40-nm)

Intertwining! (Shuffling)
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Autocorrelation Analysis

LARGE Area NFET 16 X 0.2um?(40-nm)

VDS =50 mV

10" 02 103 10%
Frequency (Hz)

Intertwining! (Shuffling)
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Autocorrelation Analysis

SMALL Area PFET 1 X 0.04pm? (40-nm)
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Autocorrelation Analysis

LARGE Area PFET 16 X 0.2 um?(40-nm)
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Temperature Autocorrelation

1 X 0.04 um NFET Population (80 devices)

1 1 b
E | Ty
gOS' VDS=O.1V_
E VGS =11V
206+
@)
S04r
5 0.
= 02+ — Tunneling Model :
L Y- — Thermal Activation
% = — —Kirton and Uren Model
o Of x Measured Correlation

Strong temperature
dependence indicate
thermal activation!

T =170 exp(z/2)

T =1, exp(Eg/kT)

-50 25 0 25 50
Temperature (°C)

75

100

Thermal activation fits.

Eg\ B
T—To-exp<z/zo+kT>-1+B
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Time Constants and Tunneling

(a) v (b)™’

E 107 E 107

E 1w* E 10°

= 1’ = 10"

2 qom 2 u"

E 15 'E 10"

2 10" —4— 0.1 MVicm = 10" —4— 0.1 MVicm
1™ —m—1 MVicm 10 1 —B—1 MVicm
o™ —&—5 MWViem - —&—5 MViem

00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14
Tunneling Distance [nm] Tunneling Distance [nm]

Tunneling front calculations for various dielectric fields and for pure S10,(a) and
25% N SiON (b).

Time constants are inconsistent with elastic tunneling [Campbell et al, 2009].
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Conclusion

A microscopic, statistical modeling approach for
charge trapping is presented.

It is applied to study the role of charge trapping
and de-trapping in Noise and BTI.

Mutual relation between different reliability
phenomena (LF noise, BTl and RDF) is
discussed.

The modeling approach may be applied for time
domain (transient) or frequency domain analysis.
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