
106 Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

Hardware Implementation for the HEVC
Fractional Motion Estimation Targeting Real-Time

and Low-Energy
Vladimir Afonso1-2, Henrique Maich1, Luan Audibert1, Bruno Zatt1, Marcelo Porto1,

Luciano Agostini1 and Altamiro Susin2

1Group of Architectures and Integrated Circuits – GACI, Federal University of Pelotas – UFPel, Pelotas, Brazil
2Graduate Program in Microelectronics – PGMicro, Federal University of Rio Grande do Sul – UFRGS,

Porto Alegre, Brazil
e-mail: {vafonso, hdamaich, lpaudibert, zatt, porto, agostini}@inf.ufpel.edu.br; altamiro.susin@ufrgs.br

ABSTRACT

This paper presents an energy-aware and high-throughput hardware design for the Fractional Motion Estimation
(FME) compliant with the High Efficiency Video Coding (HEVC) standard. An extensive software evaluation was
performed to guide the hardware design. The adopted strategy mainly consists in using only the four square-
shaped Prediction Unit (PU) sizes rather than using all 24 possible PU sizes in the Motion Estimation (ME). This
approach reduces about 59% the total encoding time and, as a penalty, it leads to an increase of only 4% in the bit
rate for the same image quality. Together with this simplification, a multiplierless approach, algebraic optimizations
and low-power techniques were applied to the hardware design to reduce the hardware-resource usage and the
energy consumption, maintaining a high processing rate. The architecture was described in VHDL and the synthe-
sis results for ASIC 45nm Nangate standard cells demonstrate that the developed architecture is able to process
Ultra-High Definition (UHD) 2160p videos at 60 frames per second (fps), with the lowest power consumption and
the lowest hardware-resource usage among the related works.

Index Terms: Video Coding; Hardware Design; Real-Time Processing; HEVC Standard; Fractional Motion Esti-
mation.

I. INTRODUCTION

Nowadays, there are several applications invol-
ving digital videos, such as digital TV, Blu-Ray, strea-
ming, videoconferencing, video calling, security and
others. Due to the huge amount of data needed to re-
present the video sequences, the use of video compres-
sion techniques is mandatory.

The state of the art in terms of video coding stan-
dards is the High Efficiency Video Coding (HEVC)
[1] and its first version was published in April 2013.
The HEVC was developed with the goal of doubling
the compression rates obtained by its predecessor, the
H.264/AVC (Advanced Video Coding) standard [2],
maintaining the same image quality [3]. During the
HEVC standardization process, new features were
introduced in the video coding tools, including the
Motion Estimation (ME) [4]. As a matter of fact, the
compression efficiency could be improved at the cost
of a computational-effort increase.

The ME step is responsible for important gains
in terms of compression efficiency [5]. However, the
ME process is the most computationally intensive

step in current video coders. Considering the H.264/
AVC, the ME is responsible for about 60-90% of the
total encoding time [6]. In the HEVC, the ME is also
responsible for an important computational cost, at-
taining as much as 62-94% of the total encoding time
(see Section III).

In order to apply the ME, the video encoder di-
vides the frame into smaller blocks, applying a block
matching algorithm to find similar blocks within the
reference frames (previously processed frames). In
HEVC, these blocks are called Prediction Units (PUs)
and they can have sizes from 8x4 or 4x8 samples up to
64x64 samples, totalizing 24 different PU sizes in the
ME [4]. Therefore, in order to achieve optimal com-
pression efficiency, the encoder should test those 24
PU sizes and choose the best one in terms of rate-dis-
tortion efficiency, which requires performing the whole
encoding process for each possibility.

Since the motion between the temporal-nei-
ghbor frames is not limited to integer positions, the
current video standards employ the Fractional Motion
Estimation (FME), which allows higher efficiency
in the encoding process. The FME can be divided in

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

107Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

two main units: (a) Interpolation Unit, that generates
sub-pixel samples around the integer-pixel positions of
the block that presents the best result for the Integer
Motion Estimation (IME); and (b) Search and Com-
parison Unit, where the blocks formed from the new
sub-pixel samples are compared with the IME best re-
sult. According to our experiments (see Section 3), the
FME is responsible for about 50% of the HEVC ME
encoding time (or 39% of the total encoding time).
This high encoding time is mainly function of the 24
PU sizes [1] that must be evaluated during a regular
HEVC ME encoding process.

Considering the high-computational effort
of the FME, above mentioned, a hardware support
is mandatory. Software solutions, running on Gene-
ral Purpose Processors, Digital Signal Processors or
Graphic Processing Units demand high energy con-
sumption for each frame encoded, when compared
to dedicated hardware architectures. This energy con-
sumption is especially cumbersome in mobile devices,
such as smartphones, which nowadays are expected to
process high and ultra-high resolution videos.

For example, if the HEVC FME used all
the 24 possible PU sizes to encode an UHD 2160p
(3840x2160 pixels) video at 60 frames per second
(fps), the FME would need to process 11.94 billions
of luminance samples per second. In other words, the
FME would require a frequency of 11.94 GHz to rea-
ch real-time processing considering the processing of
one sample per clock cycle. Even exploiting parallelism
with a hardware solution, with the goal of processing
more samples per cycle, the required frequency to rea-
ch real time is considerably high, which has impacts in
terms of energy consumption as well.

Considering the relevance of the hardware-re-
sources usage, energy consumption and throughput
issues when using the HEVC FME in portable devi-
ces, as previously mentioned, the hardware proposed
in this article was designed considering some simpli-
fications in the HEVC ME, but maintaining the com-
pliance with the standard. These simplifications basi-
cally consider the reduction of the number of PU sizes
evaluated during the ME process, and the evaluated
PUs were defined based on a statistical analysis of PU
sizes distribution (see Section III). Thus, a complete
HEVC FME hardware architecture able to process
UHD 2160p videos at 60 fps with low hardware-re-
source usage and low energy consumption was desig-
ned.

Although HEVC is a recent video-coding stan-
dard, there are some published papers proposing har-
dware designs for the HEVC FME. However, most of
these works, as [7]-[10], are limited to the interpola-
tion filters architectures, and they do not present har-
dware designs for the Search and Comparison Unit. To
the best of our knowledge, there are two works in the

literature that completely implement the HEVC FME,
the work [11] and a previous work [12].

This article is organized as follows: Section II
presents the state of the art through a HEVC ME ba-
ckground and related works. Section III shows HEVC
ME evaluations under the perspective of the PU size.
Section IV proposes the adopted simplifications to re-
duce the IME/FME computational effort. Section V
presents a complete hardware design for the FME ba-
sed on the developed strategy. Section VI compares the
obtained results with the related works. Finally, Section
VII concludes this article.

II. BACKGROUND AND RELATED WORKS

The HEVC defines that the frame is split into
smaller blocks during the coding process. Prediction
steps use the concept of PUs [13]. Considering the
ME, the PUs can assume 24 different sizes, with diffe-
rent forms: square-shaped, symmetric rectangular-sha-
ped and asymmetric rectangular-shaped. In addition,
the PU sizes can range from 4x8 samples up to 64x64
samples according to the encoder control. This enco-
der control defines the best partition, considering the
global result in terms of rate-distortion (evaluating
compression rate and image quality) [13].

The FME is used in the current video coding
standards, as the HEVC and its predecessor, the
H.264/AVC standard. Both standards allow motion
vectors with quarter-pixel precision, but some innova-
tions were introduced in the HEVC FME to improve
the coding efficiency.

The HEVC uses FIR (Finite Impulse Respon-
se) filters with 7-taps and 8-taps for the quarter-pixel
and the half-pixel interpolation of luminance samples.
The HEVC-filter inputs can be the samples at integer
positions or sub-pixel samples (quarter and half-pixel
samples) previously calculated. After the interpola-
tion, a search-and-comparison process using half-pixel
and quarter-pixel samples is performed [4]. The HM
(HEVC Model) Reference Software [14] defines that
the search using the fractional samples occurs around
the block with better result considering integer-pixel
positions. By default, in the FME of the HEVC, a sear-
ch with the eight blocks composed of half-pixel posi-
tions is performed firstly, and after that, a search with
the eight blocks around the best match of half-pixel
blocks is performed using quarter-pixel positions.

Fig. 1 represents the integer samples (blue
squares and uppercase letters), as well as the fractional
samples (non-blue squares) for the luminance samples
interpolation of the HEVC standard. In the Fig. 1-b a
4x4 block is represented, due to the space limitation.
When fractional samples are generated, 48 new frac-
tional blocks are formed for a new comparison, as can

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

108 Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

also be seen in Fig. 1. In Fig. 1-a, number values in
the squares represent the first sample of each new frac-
tional block. The gray squares represent the half-pixel
samples and the white squares represent the quarter-pi-
xel samples. In the Fig. 1-c, the fractional samples are
detailed with lowercase letters. As an example, a frac-
tional block with quarter-pixel precision is highlighted
in green in Fig. 1-b. It is important to note that the
number of new blocks for comparison (48 fractional
blocks) does not depend of the PU size.

Fifteen equations are used to calculate the frac-
tional positions [1] based on FIR filters with 7-taps
or 8-taps. The fractional positions a0,0, b0,0, c0,0, d0,0,
h0,0 and n0,0 are calculated from the luminance values
at integer positions. The calculation for determining
the fractional positions e0,0, f0,0, g0,0, i0,0, j0,0, k0,0, p0,0,
q0,0 and r0,0 requires values of the positions a0,i, b0,i and
c0,i previously calculated, where i varies from -3 to 4 in
the vertical direction [1]. It is important to notice that,
during the interpolation process, some samples around
the block are used to calculate the fractional samples.
Since the filter inputs require seven or eight samples, a
border of samples is needed to calculate the fractional
samples located at the borders of the blocks.

There are some works about the HEVC FME
in the scientific literature. However, the most of the
papers do not present a complete hardware design for
the HEVC FME that includes filtering, searching, and
comparison challenges. Only the main papers, which
present the most important results in this scenario, are
discussed in this section.

The work [7] presents a hardware design for the
HEVC FME filters. This work is focused in the ASIC
technology and it can process up to 30 fps considering
UHD 2160p videos. The work [7] is focused only in
the interpolation filtering, i.e., it does not implement
the search and comparison unit.

The works [8], [9] and [10] present hardware
designs for the interpolation unit of the HEVC FME,
which includes memories/buffers to store the samples.

However, they do not implement the search and com-
parison. The hardware design described in [8] presents
results for both FPGA and ASIC technologies and it
is able to process UHD 2160p videos at 30 fps. The
works [9] and [10] are previous works and these works
show simplified versions for implementing the FME
targeting a bigger reduction of the computational ef-
fort associated to a high loss in coding efficiency. The-
se previous works were focused in FPGA devices and
they reach the processing rate of 60 fps considering
UHD 2160p videos.

The work [11] completely designs a HEVC
FME hardware, including the search and compari-
son unit. The results of [11] are obtained considering
ASIC technology and the architecture is able to pro-
cess UHD 2160p videos in real time by using a lot of
hardware resources. The obtained results of the paper
[11] were presented considering a complexity-reduc-
tion strategy. However, the work [11] does not show
a complete evaluation about impacts of the proposed
complexity-reduction strategy.

The previous work [12] also presents a who-
le HEVC FME hardware, including the search and
comparison unit. It presents synthesis results for both
FPGA and ASIC technologies and it is able to process
UHD 2160p videos at 60 fps. However, this current
work presents a more detailed and broader software
analysis about IME/FME tools in order to assist the
decision for the best complexity-reduction strategy,
when compared with the previous work [12]. In terms
of hardware implementation, this work reduces the
number of buffers needed to store the samples, besides
eliminating the use of all intermediate buffers between
interpolation and search and comparison units. In
addition, the interpolation filters design of this work
treats the rounding error due the use of shift, rather
the conventional division; implements a better balance
of pipeline according to the targeted processing rate;
and uses a bit width in the adder outputs according to
the maximum possible values. Finally, this work also

Figure 1. A 4x4 block representation: (a) First samples of the 48 fractional blocks generated after the interpolation, (b) 4x4 block (blue
squares), and (c) Fractional samples detailing.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

109Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

employs clock-gating technique, which significantly
reduces the hardware-resource usage and the energy
consumption when compared to the previous work
[12]. Therefore, there is still space for a complete FME
hardware design able to process UHD videos in real
time, but with a lower hardware cost, a lower ener-
gy consumption and better evaluation of penalties in
terms of coding efficiency.

III. HEVC FME EVALUATIONS

Evaluations with the HM [14] software are very
important when the focus of the work is hardware de-
sign. Since the HM allows the conduction of experi-
ments under specific scenarios through the use of con-
figuration parameters and/or changes in the reference
code, the behavior of a particular video coding tool can
be evaluated. This way, strategies targeting hardware
design can be better evaluated.

Hence, some experiments were performed
using the HM with the goal to explore the ME/FME
video coding tool targeting the hardware design. The
experiments were done to test which types of ME/
FME simplifications could result in an expressive com-
plexity reduction together with a most efficient har-
dware design and with lower impacts on the encoding
efficiency. These experiments were divided in two sets
and they were conducted to evaluate: (a) The impact
in terms of compression rate and encoding time of the
ME and the FME in the HEVC; and (b) The PU sizes
most frequently selected during the encoding and their
representativeness in the frames, i.e., the PU sizes that
present the best results in the encoding process.

Each one of the experiments sets will be bet-
ter explained in the following subsections. Before that,
a subsection presents some important considerations
about the test and configuration conditions used in the
evaluations.

A. Experimental Setup

The test conditions used in the evaluations were
obtained by the JCT-VC (Join Collaborative Team on
Video Coding) recommendation [15], also known as
CTCs (Common Test Conditions). This document de-
fines eight test conditions that combine high efficiency
(Main 10 Profile) or low complexity (Main Profile)
profiles with temporal configurations called Intra Only
(IO), Random Access (RA) and Low Delay (LD).

The CTC defines 24 video sequences that must
be considered in the experiments. These video sequen-
ces are divided in classes according to their resolu-
tions and features. Class A has four video sequences
at the WQXGA resolution (2560x1600 pixels), Class
B has five sequences at the HD 1080p resolution

(1920x1080 pixels), Class C has four sequences at the
WVGA resolution (832x480 pixels), Class D has four
videos at the WQVGA resolution (416x240 pixels),
Class E has three sequences at the HD 720p resolution
(1280x720 pixels) and Class F has four videos at the
different resolutions, one video at the XGA resolution
(1024x768 pixels), two videos at the HD 720p resolu-
tion and one video at the WVGA resolution.

Although Class F presents videos at different
resolutions, all those are screen content videos, whi-
ch present different characteristics from the all other
classes. The sequences have different number of frames
and frame rates, but the CTC defines that all sequences
and frames must be encoded in the experiments.

This way, all experiments done in this work used
the Main Profile and the four QPs (Quantization Pa-
rameters) recommended in the CTC document [15],
(QP=22, 27, 32, and 37). All evaluations were perfor-
med through the HM 13.0rc1 version [14].

Each one of the experiment sets is presented in
the next subsections.

B. ME and FME Coding Efficiency Evaluation

The first set of experiments was performed to
investigate the relevance of the inter-frames prediction
and, especially, the relevance of the FME in the HEVC.
Basically, this set of experiments was performed to eval-
uate the impact in terms of compression rate and en-
coding time when the inter-frames prediction (where
the ME and FME are included) are removed from the
HEVC encoder. The adopted strategy to obtain the
inter-frames prediction impact is simple. Firstly, all se-
quences are encoded with the IO configuration, which
does not use the inter-frames prediction. After, all se-
quences are encoded with the LD and RA configura-
tions. Hence, the obtained values in terms of compres-
sion and encoding time can be compared. The results
for this evaluation are presented in the Table I. This
table presents the percentage increase in the BD-Rate
metric [16] when the inter-frames prediction is not
used (ME/FME are not used). The increase of the BD-
Rate values represents worse compression rates since
BD-Rate represents the percentage variation in the bit
rate for the same image quality. These values were ob-
tained through the average values of all sequence class-
es and QP values.

Though of this drastic increase in the BD-Rate
when the inter-frames prediction is not used, about
554.02% for the RA configuration, on average, Table
I also shows a great percentage decrease in the encod-
ing time when the inter-frames prediction is not used.
This percentage decrease in the encoding time reaches
about 74.01% considering the RA Configuration, on
average. Considering all video sequences individually,
this percentage decrease varies between 62 and 94%.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

110 Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

In the sequence, the impact of the HEVC FME
was verified. Basically, some changes were done in the
HM code to disable the FME. Therefore, all sequences
were encoded in the LD and RA configurations with
and without FME, allowing a comparison of results
in terms of bit rate and encoding time. The BD-Rate
and encoding time results about the FME impact can
be seen in the Table II. On the one hand, the values in
Table II show significant increase in the BD-Rate when
the FME is disabled, about 10.66% for the RA config-
uration, on average. On the other hand, the encoding
time has also an important decrease of 37.28% for the
RA Configuration, on average.

It is important to note that the BD-Rate results
for the classes E and F are dissonant when compared
with the other classes. These differences occur due to
the aspects of the video sequences, which involve some
regions with high motion and other regions with static
background.

Through the evaluations about the impact of the
inter-frames prediction and the impact of the FME in
the HEVC, it is possible to see the importance of those
tools in terms of compression, and also how much the
computational effort associated with them are signifi-
cant in the HEVC scenario.

In the next evaluations, only the LD and the RA
configurations were used. Since the scope of the next
experiments is point out the ME/FME simplifications
that could support an efficient hardware design for the
HEVC FME, the IO configuration was not used be-
cause this configuration does not use ME/FME.

C. Occurrences and Representativeness of PU
Sizes

The second set of experiments was conducted
with the goal to sustain a computational-effort reduc-
tion strategy for the ME/FME (see Section 4) be able
to support an efficient hardware design, maintaining
good results in terms of compression.

As previously mentioned, the major amount of
the computational effort of the HEVC is due to the de-
cision of which methods of encoding and PU sizes must
be used in the ME, since 24 PU sizes must be evaluat-
ed during the encoding. Furthermore, all these 24 PU
sizes must be processed by other encoding tools (Trans-
forms and Quantization, for instance) to define which
size presents the best compression versus image quality
tradeoff. In conclusion, this process has a high cost and a
reduction in this computational effort is highly desirable.

Table I. Percentage variations in BD-Rate and encoding time for HEVC encoding without Inter-Frames Prediction.

Sequence Classes
LD Configuration (%) RA Configuration (%)

BD-Rate increase Encoding Time reduction BD-Rate increase Encoding Time reduction

Class A - 2560x1600* – – 350.52 83.84

Class B - 1920x1080 429.32 83.47 461.19 71.80

Class C - 832x480 386.16 78.89 433.86 71.40

Class D - 416x240 416.79 80.70 479.17 69.78

Class E - 1280x720** 1965.93 69.24 – –

Class F- several 3055.73 81.82 1045.34 73.23

Average 1250.78 78.82 554.02 74.01

* Class A is not used with the LD Configuration, according to the CTCs.
** Class E is not used with the RA Configuration, according to the CTCs.

Table II. Percentage variations in BD-Rate and encoding time for HEVC encoding with FME disabled.

Sequence Classes
LD Configuration (%) RA Configuration (%)

BD-Rate increase Encoding Time reduction BD-Rate increase Encoding Time reduction

Class A - 2560x1600* – – 7.64 38.03

Class B - 1920x1080 11.27 41.12 10.45 38.84

Class C - 832x480 14.67 36.68 14.01 33.02

Class D - 416x240 21.48 38.01 16.23 35.22

Class E - 1280x720** 9.66 48.78 – –

Class F- several 5.67 41.17 4.95 41.28

Average 12.55 41.15 10.66 37.28

* Class A is not used with the LD Configuration, according to the CTCs.
** Class E is not used with the RA Configuration, according to the CTCs.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

111Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

the most selected sizes for the most evaluated classes.
Even when the 8x8 or 16x16 block sizes are not the
most selected sizes in a specific class, their percentages
of selection are significant.

The percentage of selection of the PU sizes sug-
gests that some PU sizes have great importance during
the coding process, as the 8x8 PU size. However, since
bigger PUs are more representative in the image, eval-
uate the percentage of pixels that were covered by each
PU size is important. Bigger PUs, as the 16x16, even
being less frequent, may cover a larger area and, there-
fore, they can be more relevant to the coding process.

To further evaluate this hypothesis, the data
about the selection of the PU sizes were adjusted con-
sidering the image representation of each PU size. The
concept of representativeness depicts the percentage of
pixels that were encoded by each PU size, considering
an average of all test conditions. This analysis, as de-
picted in Fig. 3, shows that bigger sizes (as 64x64 and
32x32) are more representative in the video sequences,
even being less frequent. Fig. 3 presents the PU size
representativeness distribution in each sequence class,
as well as the average distribution considering all class-
es. The values are presented separately for each square-
shaped PU size and for the average of the remaining
PU sizes (non-square shaped). The overlapped lines
in the “Non-square PUs” represent the range that the
other PU sizes can reach. As expected, the bigger PU
sizes are more important in higher resolutions, while
the smaller PU sizes are more important in the lower
resolutions.

Figures 2 and 3 show that square-shaped PUs
are both frequent and representative when compared to
the non-square PUs. Note that 8x8 PU size is the most
frequent and the 16x16 PU size is the second most fre-
quent, whereas the square-shaped sizes (64x64, 32x32,
16x16, and 8x8) are the most representative sizes. Fur-
thermore, the average results are consistent with the
results of each sequence class.

In the next subsection, the HEVC-evaluations
summary is presented.

It is possible to infer that a simple way to reduce
the computational effort is reducing the PU sizes that
must be compared in the ME process. However, the
real impact in terms of compression and image qual-
ity of using some specific PU must be evaluated. To
support this idea, the incidence of each PU size in the
inter-frames prediction and its representativeness on
the frame were investigated. Hence, some simplifica-
tions could be proposed and evaluated to obtain a low-
er computational effort in the inter-frames prediction.
Therefore, the HM code was modified with the aim of
extracting those data.

All the sequences and configurations defined by
the CTCs were encoded for all classes in the RA and
LD configurations. Therefore, 24 test sequences were
used according the sequence classes previously men-
tioned [15].

Fig. 2 shows the percentage of selection of the
PU sizes in the inter-frames prediction in each se-
quence class, as well as the average distribution con-
sidering all classes. The values are presented separately
for each square-shaped PU size (64x64, 32x32, 16x16,
and 8x8) and for the average of the remaining PU siz-
es (non-square shaped). Notice that the “Non-square
PUs” percentage on Fig. 2 presents the average of 20
different PU sizes. These results were generated disre-
garding skip blocks for both LD and the RA configu-
rations. The overlapped lines in the “Non-square PUs”
represent the range that the other PU sizes can reach,
where the base of the lines represents the lower value
of all PU sizes and the blue balloons in the top of the
overlap lines represent the most frequent sizes consid-
ering the non-square shaped PUs.

The 8x8 PU size is the most frequently select-
ed block size considering an average of the values for
all classes. The second most often selected size is the
16x16. Note that the 32x32 and 64x64 PU sizes are
poorly selected when compared to the other sizes (fifth
and fourteenth more selected sizes only). Fig. 2 also
shows that the results of each class are compatible with
the average values, i.e., 8x8 and 16x16 PU sizes are

Figure 2. Percentage of selection of the PU sizes.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

112 Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

D. HEVC-Evaluations Summary

The HEVC Evaluations were performed with
two main objectives: (1) to show the relevance of the
ME/FME tools in the HEVC video coder, both for the
gains in terms of compression as well as for the com-
putational effort associated with them; (2) to verify the
occurrences of the PU sizes that are most selected and
most representative during the encoding. From these
evaluations, it was possible to conclude that the HEVC
FME is responsible for 39.05% of the encoding time
as well as 11.61% of the bit-rate reduction obtained
in the coder (on average). Also, it is possible to note
that the square-shaped PU sizes (64x64, 32x32, 16x16
and 8x8) have the two most selected sizes and they are
the most representative sizes. Based on these observa-
tions, some scenarios that limit the PU sizes in the ME
were investigated targeting a complexity reduction that
could support the FME hardware design. These new
evaluations are presented in the next section.

IV. COMPLEXITY-REDUCTION STRATEGY

The previous set of experiments (previous sec-
tion) shown that the square-shaped sizes have the two
most selected sizes and they are the most representa-
tive sizes in both configurations, LD and RA. New
experiments were performed to verify the impacts in
terms of rate distortion and encoding time when some
restrictions on the available PU sizes are applied to re-
duce the computational effort. A reduction of the com-
putational effort of the HEVC ME/FME is extremely
important since this work focus on a low cost hardware
implementation of the ME targeting battery-powered
devices. However, this computational effort reduction
should bring low losses in terms of coding efficiency.

Only situations considering the square-shaped
PU sizes are considered in function of the conclusions

presented in the previous section and also in function
of the allowed hardware design scalability considering
these PU sizes. The most-attractive scenario targeting
hardware design is using only one size due to strongly
simplifications in terms of hardware control and mem-
ory communication, but this scenario should decrease a
lot the encoding efficiency. Therefore, the four square-
shaped sizes were evaluated to verify the possibilities to
fix the size of the PUs for one size. As the losses in terms
of rate distortion by fixing the size of the PUs are pre-
sumable, other scenarios limiting the PU sizes for more
than one square-shaped size were also considered.

Six scenarios were evaluated: only 8x8 PUs,
only 16x16 PUs, only 32x32 PUs, only 64x64 PUs, all
square-shaped PUs except 8x8 and all square-shaped
PUs. These scenarios were evaluated only in the in-
ter-frames prediction and disregarding the skip mode,
i.e., the skip mode used the sizes according a regular
encoding of the HM. The results are presented in the
Tables III and IV. The scenarios when the ME process
was limited to 32x32 and 64x64 PUs presented ag-
gressive coding degradation, and, for this reason, those
results were omitted in the tables.

Table III shows the encoding time results con-
sidering previously described scenarios. These results
show the percentage decrease in terms of encoding
time and, consequently, the reduction in terms of com-
putational effort. Through these results, it is possible
to observe that fixing the PU size at 8x8 or 16x16 can
bring reductions higher than 81% in the encoding
time for the RA configuration.

The results presented in the Table IV consider
the BD-Rate metric, and these results show the impact
in terms of compression when the number of PU sizes
is limited, being compared with a regular flow with 24
PU sizes in the ME. According to these results, fixing
the encoding to a single PU size brings significant loss-
es (19.31% increase in the BD-Rate, considering RA
Configuration) in the coding efficiency.

Figure 3. Percentage of image representativeness of the PU sizes.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

113Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

Therefore, although an expressive result in
terms of encoding time reduction, the losses in the
compression make the strategy of fixing the PU for
only one size unacceptable, as presented in Table IV.
Similarly, when we fix the PU sizes for the three most
representative sizes, the compression losses continue to
be important, at least 13.83%, on RA-configuration
average.

Nevertheless, considering the four square-
shaped PU sizes, the compression losses are about 4%.
Although the losses in terms of compression when the
number of the PU sizes used in the ME is limited to the
square-shaped sizes, the computational effort is drasti-
cally reduced (to 1/6 in the ME approximately, from
24 to 4 modes). Since the ME is the most complex
module in the encoder, the relevance of this strategy is
presumable. Still, the reduction in the total encoding
time is higher than 57.9% for any sequence class, as
can be seen in the Table III.

This scenario with all square-shaped PU sizes
presented the best trade-off for the target application.
But other important fact is that this simplification al-
lows an efficient hardware design, since a scalable hard-

ware could be designed. This means that one module
designed for 8x8 PU size can be reused four times to
process a 16x16 PU. Then, this simplification allows
a more efficient hardware design, allowing the paral-
lelism exploration and a better control of the tradeoff
among hardware cost, energy consumption and
throughput.

Based on the conclusions presented in this sec-
tion, an architecture for the HEVC FME supporting
the four square-shaped PU sizes is presented in the
next section.

V. FME HARDWARE DESIGN

The proposed architecture (Fig. 8) was designed
to perform the FME only at the PU size that present-
ed the best IME result. As previously mentioned, the
FME can be divided into two main units: (a) the inter-
polation; and (b) the search and comparison. This ar-
ticle presents an architecture for the FME which is able
to perform both the interpolation with quarter-pixel
precision and the search and comparison considering

Table III. Percentage decrease in the encoding time with limited PU sizes.

Sequence Classes

LD Configuration (%) RA Configuration (%)

8x8
PU size

16x16
PU size

Square
PU sizes

(except 8x8)

Square
PU sizes

8x8
PU size

16x16
PU size

Square
PU sizes

(except 8x8)

Square
PU sizes

Class A - 2560x1600* – – – – 81.84 85.15 71.04 58.92

Class B - 1920x1080 82.79 86.29 72.37 60.23 81.26 84.14 70.96 60.15

Class C - 832x480 82.98 86.23 70.61 59.69 81.56 84.00 69.40 58.77

Class D - 416x240 82.66 85.70 72.23 60.14 80.68 83.30 69.67 57.97

Class E - 1280x720** 83.58 86.12 70.31 58.42 – – – –

Class F- several 83.09 86.19 70.75 57.97 81.85 84.29 69.64 58.74

Average 83.02 86.10 71.25 59.29 81.44 84.18 70.14 58.91

* Class A is not used with the LD Configuration, according to the CTCs.
** Class E is not used with the RA Configuration, according to the CTCs.

Table IV. Percentage increase in BD-Rate with limited PU sizes.

Sequence Classes

LD Configuration (%) RA Configuration (%)

8x8
PU size

16x16
PU size

Square
 PU sizes

(except 8x8)

Square
PU sizes

8x8
PU size

16x16
PU size

Square
PU sizes

(except 8x8)

Square
PU sizes

Class A - 2560x1600* – – – – 38.24 18.80 7.19 2.56

Class B - 1920x1080 28.69 21.27 13.59 2.77 25.53 23.69 16.34 2.33

Class C - 832x480 18.82 20.11 16.29 4.31 15.95 17.16 14.07 3.84

Class D - 416x240 14.92 22.34 20.45 5.55 11.66 17.80 16.37 4.30

Class E - 1280x720** 33.67 17.89 8.84 4.49 – – – –

Class F- several 21.45 27.24 22.32 6.10 16.24 19.08 15.21 4.12

Average 23.51 21.77 16.30 4.64 21.52 19.31 13.83 3.43

* Class A is not used with the LD Configuration, according to the CTCs.
** Class E is not used with the RA Configuration, according to the CTCs.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

114 Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

blocks at the fractional positions. The FME hardware
design was developed based on the HEVC Main Pro-
file and the architecture works with 8x8 blocks to as-
semble the bigger square-shaped blocks (16x16, 32x32
and 64x64), reducing the hardware-resource usage.
The FME hardware design is presented in the next two
subsections. First, the design of the interpolation fil-
ters is shown. Finally, the complete FME hardware is
presented.

A. Interpolation Filters Design

The interpolation unit uses FIR filters to in-
terpolate the luminance samples and a buffer to store
some generated samples that are reused in the fil-
ters to interpolate other samples. Since interpolation
filters have an important cost in terms of hardware,
some optimizations were implemented. As previously
explained, there are fifteen equations to generate the
values of the fractional positions [1]. However, these
equations have some similarities that allow algebraic
manipulations and the sharing of common sub-expres-
sions. Hence, to reduce the hardware cost of the mul-
tiplications by constant, they were replaced by shift-
adds.

Due to the similarities between the equations,
which share the same multiplications by constants in
some cases only two different hardware architectures
are needed for the filters. Table V shows the constants
used in the multiplications according to the fractional
positions presented in Section 2. Note that two sets
of constants are the same, although in an inverse or-
der. Hence, only filter inputs must be changed and the
hardware design used in the filters can be the same.

Even though only two hardware designs are
needed for the filters, three sets of filters were adopted
according to the calculation of fractional positions to
obtain the desirable parallelism in the complete FME
architecture. Each set of filters is responsible for each
set of samples presented in Table V. Then, the three
sets of filters are called here Up-type, Middle-type and
Down-type, according to the position of the fractional
samples related to the samples at integer positions. Fig.
4 shows the respective fractional samples calculated for
each one of the three sets of filters.

Architectures with three pipeline stages were de-
signed targeting real-time processing for ultra-high res-

olution videos, one considering the Up/Down filters,
and another one considering the Middle filters. Figures
5 and 6 presented the Middle and the Up/Down filters,
respectively.

The interpolation filters developed in this work
are optimized versions of the filter presented in [9].
Basically, these current filters have the following im-
provements: (a) treat the rounding error due the use of
shift, rather the conventional division; (b) implement
a better balance of pipeline according to the processing
rate targeted; (c) use a bit width in the adder outputs
according to the maximum possible values; and (d)
present synthesis for both FPGA and ASIC technol-
ogies with energy consumption results for ASIC tech-
nology.

It is important to note that the filter inputs
(a0-a7) shown in the Figures 5 and 6 are 8-bit wide,
considering the luminance values at the integer posi-
tions. However, some fractional samples require other

Figure 5. Middle Filter Architecture.

Table V. FIR-filter coefficients defined by the HEVC.

Fractional Positions FIR-Filter Coefficients

ai,j , di,j , ei,j , fi,j , gi,j {–1, 4, –10, 58, 17, –5, 1, 0}

bi,j , hi,j , ii,j , ji,j , ki,j {–1, 4, –11, 40, 40, –11, 4, –1}

ci,j , ni,j , pi,j , qi,j , ri,j {0, 1 , –5, 17, 58, –10, 4, –1}

Figure 4. Fractional samples generated according the filter type.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

115Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

fractional samples as inputs. The fractional values used
as inputs (ai,j, bi,j and ci,j) can present values between
-64 and 319 or -96 and 351, depending of the fil-
ter type. For this reason, the filter inputs are 10-bit
wide. In turn, the filter outputs can change according
to the type of filter. The Up/Down filter output is 10-
bit wide, while the Middle filter output is 11-bit wide,
as shown in the Figures 5 and 6.

In the scope of this work, the fractional positions
were also classified according to their positions related
to the integer positions. Fig. 7 details the three types of
fractional positions. Horizontal-type fractional samples
(H-type) are calculated from the integer samples with
horizontally-distributed positions in the block. The
Vertical-type fractional samples (V-type) are calculat-
ed from the integer samples with vertically-distributed

positions in the block. Finally, the Diagonal-type frac-
tional samples (D-type) are calculated from the H-type
fractional samples previously calculated and they are
located diagonally with respect to the integer samples.

B. FME Hardware Architecture

The complete FME architecture, with all the
modules needed for both the interpolation and the
search and comparison units is shown in Fig. 8.

To interpolate the samples, a scheme able to
perform the calculation of an entire line or column of
fractional samples per cycle was adopted. Therefore,
three sets of nine units of each filter (Up, Middle and
Down filters) were used to allow the calculation of
27 fractional samples per cycle, considering each 8x8
block. Note that the FME architecture was designed to
work with all square-shaped PU sizes, assembled from
the 8x8 PU sizes. By assembling the bigger square-
shaped PU sizes from the 8x8 PU sizes, the hardware
resources can be saved.

In the Fig. 8, a multiplexer is used to select the
16 samples that must be connected to the filter inputs.
These samples can be provided from reference frames
stored in an external memory (integer positions with
eight bits) or it can be provided from the internal buf-
fer (H-type fractional positions), since some calculat-
ed fractional samples must be reused in the filters to
calculate other fractional positions. The H-type buf-
fer stores H-type fractional samples with 10-bit wide.

Figure 6. Up/Down Filter Architecture.

Figure 7. Fractional positions according to the integer samples.

Figure 8. FME Hardware Architecture.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

116 Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

For the Search and Comparison modules and the SAD
Trees, all the fractional samples must have eight bits,
including the H-type samples. Hence, a clip operation
is needed. This clip operation cannot be performed be-
fore the H-type samples are stored in the buffer, since
this fact would cause an accumulative error.

The Clip module is applied before the fraction-
al samples going to the Search and Comparison Unit.
This module is used to maintain the values of the sam-
ples between 0 and 255 (8-bit wide), since after the
interpolation the fractional samples had an increase in
the bit width due to the sum and subtraction oper-
ations inside the filters. Basically, negative values are
transformed to 0 and values higher than 255 are trans-
formed to 255. Values between 0 and 255 continue
the same. So, all the fractional samples again have eight
bits, like the samples at the integer positions.

Considering an 8x8 block, 432 H-type fraction-
al positions must be calculated and stored (27 columns
x 16 lines). The H-type buffer stores 16 lines because a
border of four horizontal samples above the block and
four horizontal samples below the block are needed for
the calculation of other fractional samples. Also, 216
V-type fractional positions must be calculated. Finally,
H-type samples are used as inputs in the filters to cal-
culate the 729 D-type fractional positions. Therefore,
27 fractional samples are calculated per cycle, totalizing
51 cycles to process an 8x8 block (considering that the
pipeline of the filters is filled).

As previously mentioned, the 8x8 block that
presents the best result in the IME can be compared
with other 48 fractional blocks formed from the in-
terpolation process. In this work, the Full Search (FS)
algorithm is used for the FME, i.e., all the fractional
blocks are compared. This decision is based in some
facts: (a) Only 48 blocks must be compared; (b) The
result is optimal inside the search area, and (c) The de-
pendencies of data in the search are eliminated, since
half and quarter-pixel blocks are processed in parallel.

Basically, the Search and Comparison have the
following modules: SAD Trees, SAD Accumulators,
and SAD Comparator, as can be seen in the Fig. 8.

The SAD Trees module allows the SAD (Sum
of Absolute Differences) calculation for all fractional
blocks formed from the interpolation and it has 12
SAD tree units. Each SAD tree unit is able to calculate
the SAD of one fractional block. Basically, the SAD
tree unit obtains the differences between the fractional
samples of the reference frames (R0-R7) and the in-
teger samples of the current block (C0- C7), for each
position, as presented in the Fig. 9. After, the results
of these subtractions (only the absolute number) are
summed. One SAD tree has four pipeline stages and it
is able to process an entire line or column (depending
on the fractional samples) of the 8x8 block per cycle,
since the unit processes the SAD of eight samples in

parallel. As the SAD Trees module has 12 SAD tree
units, this module is able to calculate 12 lines of 12
fractional blocks simultaneously.

After the latency of the SAD tree units, the SAD
results of the lines or columns must be accumulated in
the SAD Accumulator module, since each block has
eight lines or columns. Twelve outputs of the SAD
trees are connected to 48 accumulators as presented in
Fig. 10-a, so that 12 accumulators are selected every
eight clock cycles. This way, after 12 cycles, the FME
module has the SAD of the six or 12 fractional blocks.
Although there are 12 SAD trees, the blocks related
with H-type and the V-type fractional samples are cal-
culated for each six blocks. In the sequence, the SAD
of the blocks related with the D-type fractional samples
are calculated for each 12 fractional blocks.

Figure 9. Architecture of one SAD tree.

Figure 10. Simplified architectures: a) SAD Accumulator of one
block; b) SAD Comparator of two blocks.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

117Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

The SAD Trees module is fed three times ac-
cording to the interpolation, once for each type of frac-
tional samples, as can be seen in the Fig. 11.

It is important to note that the SAD Trees and
the SAD Accumulators need 51 cycles to calculate the
SAD of the 48 fractional blocks, line after line (or col-
umn after column), as the interpolation. The outputs
of the accumulator are 20 bit-wide since the SAD of
the bigger square-shaped PUs, as the 64x64 PU, can be
calculated from 8x8 blocks. Such as the integer samples
of the reference frames, the integer samples of the cur-
rent block (eight bits) are stored in an external memory
and they are accessed every eight samples.

After the calculation of the SAD values for all 48
fractional blocks, these values, and their respective mo-
tion vectors, are sent to the SAD Comparator module,
as can be seen in the Fig. 8. The SAD comparator uses
48 simplified comparators as presented in Fig. 10-b
distributed for six pipeline stages. This module is re-
sponsible to compare all blocks simultaneously, two by
two, inside the module. The SAD Comparator has six
pipeline stages, since for each pipeline stage, half of the
motion vectors and SAD values are discarded. During
the processing of one of these pipeline stages, the com-
parison with the SAD obtained by the IME is per-
formed. Then, the SAD Comparator delivers the SAD
value and the motion vector of the block that presents
the best result between all fractional blocks and the
IME after six cycles. It is important to highlight that
the motion vectors are stored in an external memory
and they are selected according to the fractional blocks.
As the SAD comparator module works in parallel with
the SAD calculation of the next 8x8 block, this module
does not affect the total number of cycles.

Both, the Interpolation and the Search and
Comparison modules were integrated to a control unit.
This control of the FME architecture was implemented
through a state machine. Since the Interpolation re-
quires 51 clock cycles to generate the sub-pixel sample
values of an 8x8 block after the pipeline is filled, and

the Search and Comparison needs of 51 clock cycles
for working including the cycles needed to fill the pipe-
line, these FME units can work in parallel.

Basically, the SAD trees are fed with the first
fractional samples while the other fractional positions
are interpolated. Fig. 11 shows the details of the syn-
chronism considering the FME architecture, including
an analysis about the number of cycles needed for all
FME modules. It is important to note that there are 19
initial cycles to interpolate the H-type fractional sam-
ples, including three cycles to fill the pipeline and eight
cycles (four cycles after to fill the pipeline and four cy-
cles at the right) to interpolate the fractional samples at
the border of the 8x8 block. These samples are needed
to interpolate other fractional samples.

The first valid results depend on the cycles need-
ed in the Interpolation and the Search and Comparison.
So, the FME architecture delivers the first valid results
considering an 8x8 block in 64 cycles. After these cycles,
the results of a new 8x8 block are delivered at each 51
cycles. This number of cycles refers to an 8x8 block size.
Besides the 8x8 PUs, the bigger square-shaped PUs can
be fragmented into multiple 8x8 blocks. Then, as strat-
egy, the composition of bigger PUs through the use of
8x8 PU size was adopted. The number of cycles to pro-
cess a square-shaped PU can increase according to the
size. For instance, a 16x16 PU size requires 204 cycles
to be processed after the pipeline is filled.

VI. SYNTHESIS RESULTS AND COMPARISON

In this section, the results obtained from the de-
veloped FME architecture are presented and discussed.
The FME architecture was described in VHDL and
the synthesis results were generated considering FPGA
and ASIC technologies, using the Quartus II Altera
Tool [17] and the Cadence RTL Compiler [18], re-
spectively. All the results for the FPGA were obtained
using the Altera Stratix V 5SGXEA3K2F40C1 device.

Figure 11. Clock cycles distribution to process an 8x8 block.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

118 Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

Table VI presents the results and related works
for the FPGA technology. The developed architecture
reaches a maximum frequency of 408.83 MHz. Con-
sidering our ME/FME simplifications, the minimal
frequency to process UHD 2160p videos at 60 fps is
396.8 MHz. This way, considering the FPGA device,
the architecture is able to process 240 fps at HD 1080p
and 60 fps at UHD 2160p resolutions when operating
at the full speed.

Table VI shows that this work presents high
hardware-resource usage when compared with some
FPGA designs found in the literature, using 7,092
ALMs (12,031 ALUTs and 13,235 registers). This
hardware-resource usage is expected since our work
implements a whole FME design. Anyway, the other
video coding tools can be integrated on the same de-
vice since only 5% of the FPGA device was used.

The works [9] and [10] (previous works) do
not implement the search and comparison unit. Al-
though both works are able to process UHD 2160p
videos at 60fps, this work presents much lower loss-
es in terms of compression, with a 4.04% increase in
BD-rate, on average. The work [8] is unable to process
UHD 2160p videos at 60 fps neither implements a

whole FME design. Furthermore, it has compression
losses that are not clearly presented in the paper. When
compared with the related work [12] (previous work),
this work presents the same throughput and compres-
sion losses, while reducing the hardware-resource us-
age about 44.22%.

The ASIC hardware results, obtained with the
45nm Nangate standard-cells technology, are detailed
in the right-most column of Table VII. The developed
architecture uses 148,410 gates to implement the com-
plete FME architecture. It is possible to note that our
design is able to process UHD 4320p (7680 x 4320
pixels) videos at 30fps at least, since the maximum fre-
quency reaches 826.45 MHz. However, we consider
that UHD videos require at least 60 fps for a real-time
processing. Therefore, we decide to omit the results for
this target. Also, our design reaches real-time process-
ing of HD 1080p videos with low energy consump-
tion, about 4.96mW. The energy consumption results
for the UHD 2160p resolution at 60 fps is 15.85mW.

Table VII also present results of some promi-
nent HEVC FME related works. The performance re-
sults in Table VII show that [8] is unable to process
UHD 2160p videos at 60 fps. Despite the work [7]

Table VI. Results and related works for the FPGA technology.

Related Works Pastuszac [8] Afonso [9] Maich [10] Afonso [12] Developed Design

Search and Comparison no no no yes yes

FPGA Technology Arria II GX Stratix III Stratix III Stratix V Stratix V

ALUTs 28,757 4,077* 8,744 17,628 12,031

Registers N.A. 20,408 57,859 28,715 13,235

BD-Rate Increase yes 22.52%** 20.51%** 4.04%** 4.04%**

Freq. 1080p@30fps (MHz) 100 49.6 22.1 49.6 49.6

Freq. 2160p@60fps (MHz) no 396.8 176.8 396.8 396.8
*: Partial ALUTs result mentioned in the paper.
**: Results using HM13.0 and CTCs.

Table VII. Results and related works for the ASIC technology.

Related Works Diniz [7] Pastuszac [8] He [11] Afonso [12] Developed Design

Search and Comparison no no yes yes yes

ASIC Technology TSMC 150nm TSMC 90nm 65nm* TSMC 65nm Nangate 45nm

Total Area (gates) 30,209 277,074 1,183k 249,153 148,410

SRAM (bits) 1,224 no 19.2k no no

BD-Rate Increase no yes 2.07%** 4.04%*** 4.04%***

1080p@30fps
Freq. (MHz) 78 100 12 49.6 49.6

Power/Voltage N.A. N.A. 6.3mW / 0.7V 8.1mW / 0.72V 4.96mW / 0.9V

2160p@60fps
Freq. (MHz) no no 95 396.8 396.8

Power/Voltage no no 48.3mW / 0.7V 48.67mW / 0.72V 15.85mW / 0.9V
*: Library was not mentioned in the paper.
**: Results using HM10.0
***: Results using HM13.0 and CTCs.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

119Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

demonstrating lower hardware-resource usage than
our design, this work developed only the filters of the
interpolation unit. To show the relevance of our re-
sults in terms of hardware-resource usage, it is possi-
ble to see that our result for a complete FME uses less
hardware than that used by [8] which implements only
the interpolation unit. The works [7] and [8] do not
present power-consumption results. When compared
with the related work [12] (previous work), this work
presents the same throughput and compression losses,
while reducing the hardware-resource usage and the
energy consumption about 40.4% and 38.8%, respec-
tively (1080p@30fps). Considering 2160p@60fps,
the energy consumption is reduced about three times.

Considering the presented results, it is possible
to conclude that only one published work [11] that is
not a previous work presents a complete HEVC FME
like the presented in this article, including the interpo-
lation and the search and comparison units. The per-
formance result obtained by [11] allows the processing
of UHD 2160p videos in real time with low energy
consumption. However, the work [11] uses a strategy
to reduce the complexity of the FME, where the 7 and
8-tap filters used to calculate the quarter-pixel samples
in the HEVC were replaced by bilinear filters, as the
H.264/AVC standard [2]. Thus, the strategy used by
[11] imposes the use of two different hardware designs
for FME and Motion Compensation (MC) filtering
of the encoder in order to avoid the coding/decoding
drifting and its consequent image quality degradation.

In addition, [11] presents an analysis on the
compression losses of its complexity-reduction strategy
using 11 videos with high and ultra-high resolutions.
Therefore, [11] does not use the CTCs nor evaluates
its strategy with low resolution videos, which lead to
imprecise results in terms of image quality degrada-
tion. Considering its analysis, [11] presents 2.07%
increase in the BD-Rate, while our work presents an
average increase of 4.04% (considering the CTCs).
However, when only the five common HD 1080p
sequences (Kimono, ParkScene, Cactus, BQTerrace, Bas-
ketballDrive) are considered for both works, the com-
pression losses are similar. In this scenario, our work
presents a 2.55% increase in terms of BD-Rate, while
[11] presents 2.35%. Furthermore, our strategy is
much wider than the strategy presented by [11] (FME
strategy only) since our scheme reduces in 59% the to-
tal encoding time and the global energy-consumption
(not evaluated here), while the compression losses of
[11] do not consider complexity-reduction strategies
for IME, which is not plausible (IME is more complex
than FME).

The power dissipation presented in [11] is
higher than the power dissipation obtained from
our hardware design about three times considering
2160p@60fps. In terms of frequency, [11] reaches re-

al-time processing with a lower frequency for UHD
resolution due to higher parallelism. However, the ar-
chitecture in [11] uses a very large area, which is about
eight times larger than ours.

Despite the developed work using an ASIC
45nm and the main related works use 65nm technol-
ogy, we use a supply voltage higher than the related
works. Furthermore, our hardware and power results
are substantially better than the related works.

VII. CONCLUSIONS

This work presented an optimized hardware
design for the whole HEVC FME targeting real-time
processing for ultra-high resolution videos focusing on
battery-powered devices. A detailed study about the
state of the art was developed, allowing a solid the-
oretical background. Evaluations about HEVC ME/
FME shown that the four square-shaped PU sizes have
the two most frequently selected sizes and they are
the most representative sizes in the encoding process.
These observations led us to adopt a complexity reduc-
tion strategy based in the use of the four square-shaped
PU sizes in the ME. This approach brought a reduc-
tion of about 59% in the total encoding time with only
4% increase on BD-Rate. A HEVC FME hardware
architecture was developed and the synthesis results
for ASIC 45nm technology show that the developed
architecture is able to process UHD 2160p videos at
60 fps consuming only 15.85mW and reducing dras-
tically the hardware-resource usage when compared to
the related works.

ACKNOWLEDGEMENTS

We have a special acknowledgement to CNPq,
CAPES and FAPERGS to support this work.

REFERENCES

[1]	 International Telecommunication Union. Recommendation
ITU-T H.265: High efficiency video coding. April, 2013.

[2]	 International Telecommunication Union. ITU-T Recommen-
dation H.264: Advanced video coding for generic audiovisual
services. November, 2007.

[3]	 G. J. Sullivan and T. Wiegand, “Draft requirements for
next-generation video coding project,” VCEG-AL96, Geneva,
July, 2009.

[4]	 G. J. Sullivan, et al., “Overview of the High Efficiency Video
Coding (HEVC) Standard,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 22, December,
2012, pp. 1649-1668.

[5]	 A. Puri, X. Chen and A. Luthra, “Video Coding Using the
H.264/MPEG-4 AVC Compression Standard,” Elsevier Sig-
nal Processing: Image Communication, No. 19, 2004, pp.
793–849.

Hardware Implementation for the HEVC Fractional Motion Estimation Targeting Real-Time and Low-Energy
Afonso; Maich; Audibert; Zatt; Porto; Agostini & Susin

120 Journal of Integrated Circuits and Systems 2016; v.11 / n.2:106-120

[6]	 Z. Zhao and P. Liang, “A Statistical Analysis of H.264/AVC
FME Mode Reduction,” IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 21, No. 1, January, 2011,
pp. 53-61.

[7]	 C. Diniz, M. Shafique, S. Bampi, and J. Henkel, “High
throughput interpolation hardware architecture with coarse
grained reconfigurable datapaths for HEVC,” in Proceedings
of the 20th IEEE International Conference on Image Pro-
cessing, 2013, pp. 2091-2095.

[8]	 G. Pastuszak and M. Trochimiuk, “Architecture design of the
high-throughput compensator and interpolator for the H.265/
HEVC encoder,” Journal of Real-Time Image Processing,
2014.

[9]	 V. Afonso, H. Maich, L. Agostini and D. Franco, “Low cost
and high throughput FME interpolation for the HEVC emerg-
ing video coding standard,” in Proceedings of the 4th Latin
American Symposium on Circuits and Systems, 2013.

[10]	 H. Maich, V. Afonso, D. Franco, B. Zatt, M. Porto and L.
Agostini, “High throughput hardware design for the HEVC
Fractional Motion Estimation Interpolation Unit,” in Proceed-
ings of the 20th IEEE International Conference on Electron-
ics Circuits and Systems, 2013.

[11]	 G. He, D. Zhou, Y. Li, Z. Chen, T. Zhang and S. Goto,
“High-Throughput Power-Efficient VLSI Architecture of Frac-
tional Motion Estimation for Ultra-HD HEVC Video Encod-
ing,” IEEE Transactions on Very Large Scale Integration
Systems, 2015.

[12]	 V. Afonso, H. Maich, L. Audibert, B. Zatt, M. Porto, and L.
Agostini, “Memory-Aware and High-Throughput Hardware
Design for the HEVC Fractional Motion Estimation,” in Pro-
ceedings of the 28th Symposium on Integrated Circuits and
Systems Design, 2015.

[13]	 I. Kim, K. McCann, K. Sugimoto, B. Bross, W. Han and G.
Sullivan, High Efficiency Video Coding (HEVC) Test Model
13 (HM13) Encoder Description, JCTVC-O1002, Geneva,
October, 2013.

[14]	 High Efficiency Video Coding (HEVC) Reference Software –
HM13.0rc1. Dec., 2014; http://hevc.hhi.fraunhofer.de

[15]	 F. Bossen, Common Test Conditions and Software Refer-
ence Configurations, JCTVC-L1100, Geneva, January, 2013.

[16]	 G. Bjontegaard, Improvements of the BD-PSNR model,
VCEG-AI11, July, 2008.

[17]	 ALTERA. FPGA CPLD and ASIC from Altera. Altera Web
Site. Oct., 2014; www.altera.com

[18]	 SYNOPSYS. Synopsys.com. Synopsys Web Site. Dec.,
2014; www.synopsys.com

