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1. INTRODUCTION

Multi-core processors are currently being estab-
lished as a standard for general purpose processing due
to energy consumption concerns. In this scenario, mov-
ing to more, simpler processors seems to be a natural
trend for computers. Thus, one may not be surprised
when many-cores architectures [1] will be establisehd as
a paradigm in the near future. The design of multi-core
architectures demands also considerable attention on
communication infrastructure characteristics. 

At a first attempt, one may consider busses to
keep up with the communication demands. However,
the bus-based design remains useful only to a certain
(limited) number of cores [2]. When MP-SoCs come
to the picture, busses can no longer support the
increasing amount of communications demanded by
(a constantly growing) number of cores [3].

By offering concurrent communication chan-
nels, networks-on-chip can be tuned to trade-off
design constraints for distributed applications.
However, due to replication of resources, area and
power consumption may impact on the design [4]
being thus, always subject to a careful analysis on
design requirements. Even so, the source for the most
part of area and power dissipation in MP-SoCs comes

from the processing elements and not from the net-
work’s routers. Thus, is up to designers to fit process-
ing and communication architectures implementa-
tions to comply with applications requirements. This
paper focus on helping designers on such a task by
proposing an original packet-driven communication
architecture with the ability to execute instructions.
The main idea here consists on setting  processing
capabilities inside the routers of a specific NoC archi-
tecture, called IPNoSys [5].

The traditional NoC design consists of a set of
routers interconnected with its neighboring and hav-
ing a local port dedicated to the connection with a
computing element, a memory or other useful core in
a computing system. In this design the routers are
responsible only for the data transmission. In the
IPNoSys approach processing elements are added to
the routers.

However, it is important to notice that, newer
architectures normally are not useful if one is not able
to program it.  Concerning this, the paper also pro-
poses a programming model, where primitives are
defined to allow the IPNoSys network to be pro-
grammed for general purpose applications.

The paper is organized as follows: in the next
section related works are presented. Section 3 presents
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the proposed architecture and its components.
Section 4 presents the proposed programming model.
Section 5 presents the simulation scenarios and results
as well as a comparison between the proposed archi-
tecture and a cycle accurate virtual platform. Section 6
presents the conclusions and future works. 

2. RELATED WORKS

The network-on-chip (NoC) emerged as the
most adequate interconnection mechanism to integrat-
ed systems that demand mighty processing and great
data flow, since that NoC is reusable and has high scala-
bility. NoCs are formed by a set of routers and point-to-
point bidirectional channels that link the system
cores[6]. The communication performed in NoCs uses
messages encapsulated in packets. For the transmission,
the packets flow from the source to destination through
a path of neighboring routers in a parallel and pipelined
way[7]. The main disadvantages of the NoC design are
chip area and power dissipation rising. Due to its dis-
tributed nature MPSoCs design suffer from problems
such as data coherency and consistence in caches, which
are even harder when NoCs architectures are used
instead of busses. Solutions on this concern can be
found in [8]. However, some viability experiments [9]
proved that it is possible to take advantage of NoC char-
acteristic to design an architecture based on packet-driv-
en execution where the routers are able to incorporate
the execution of application instructions while the pack-
ets flow from the source to the destination.

In particular, the queue machines [10] present
a computing model with some similarity to this pro-
posal, but they use a queue processor instead of NoC
for the application execution. The queue machines, or
queue-based computers can be an efficient model to
pipeline execution once they use implicit reference to
an operand queue as a stack machine does [10]. Some
researchers noticed that it is possible to build an effi-
cient superscalar or data flow machine through queue
machine due to the fact that the operands and instruc-
tions are aligned with each other in this machine [11].

According to [12], queue machines are a novel
alternative for embedded architectures due to their
compact instruction set, high instruction level paral-
lelism and simple hardware that reduce the chip area and
power dissipation. Thus, several computing models have
been proposed for queue machine [13], [11], [14].

This computing model suggests that the execu-
tion of application could be done by dataflow archi-
tecture. A recent patent [15] proposed a dataflow
architecture where part of execution of the applica-
tions is done by the NoC. The architecture is formed
by a normal Von Neumann processor and two net-
works on chip (data network and instruction net-
work). The processor fetches the instructions and per-

forms those which are not within a loop. Otherwise,
the processor configures the networks and distributes
the data through a bus for execution in the networks.
The author affirms that his architecture is powerful
only when there are instructions within loop in the
applications. Furthermore, it is noticed that the scala-
bility is limited by the bus, the dataflow graph which
determines the ALU’s configuration is limited by
NoC size and the instruction network depends on
processor’s program counter to fetch the instructions.

Other dataflow architecture is presented in [16].
This architecture is a reconfigurable solution with coarse
grain formed by an operative layer, a configuration layer
and a custom RISC core with a dedicated instruction set
as configurations controller. The operative layer uses a
coarse-grained granularity component called Dnode,
which is a datapath component, configured by a microin-
struction code, with an ALU and few registers. The con-
figuration layer uses the same principle as FPGAs, it’s a
RAM which contains the configuration of all compo-
nents (Dnodes and interconnects). This architecture is
thus not intended to be a stand-alone solution, rather an
IP core accelerator for data oriented intensive comput-
ing, which would take place in a SoC. The Dnodes has in
fact two execution modes: global mode, which the
Dnodes execute microinstruction code that comes from
configuration layer, managed by the RISC configuration
controller; and local mode, which each Dnode stores, in
its registers, up to 8 microinstruction codes, that are exe-
cuted each cycle, increasing also the value on the multi-
plexer address input the content of a register to the data-
path part of the Dnode. The Dnodes are organized in
layers that are connected to the two others adjacent lay-
ers by also dynamically configurable switch component
able to make any interconnection between two stages.

In terms of microarchitecture configuration,
the iWarp chip [17], [18] is similar to the one pro-
posed in this paper. iWarp is a product of a joint effort
between Carnegie Mellon University and Intel
Corporation, which aims to develop a powerful cus-
tom VLSI single-chip processor for various distributed
memory parallel computing systems. iWarp can imple-
ment a variety of processor interconnection topolo-
gies, including one-dimensional (1D) arrays, rings,
two-dimensional (2D) arrays, focusing on systems
ranging from few to thousands of processors. The
communication can be implemented as message pass-
ing or systolic. The systolic model is similar to our
proposal, though iWarp uses static scheduling to
ensure synchronism among processors.

3. PROPOSED ARCHITECTURE

Networks-on-Chip enable parallel communica-
tion of packets between cores, with packets having
temporarily being allocated to buffers in their path to
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destination. Taking this scenario, it is possible to syn-
tactically describe programs as a collection of packets
comprised by instructions and operands. Also, it is
necessary to modify the routers to enable them to exe-
cute at least one instruction (part of a packet) while
routing packets. The extra area needed to allow
routers to execute instructions must be suppressed
from other parts of a MP-SoC. This is achieved in
IPNoSys by removing regular processing elements
and by replacing them by Arithmetic/Logical Units
inside each router. This way, IPNoSys approach cre-
ates a new paradigm in NoCs usage on MP-SoC
designs, since communication and computation can
no longer be considered apart from each other during
the design process.

In the IPNoSys (Integrated Processing NoC
System) architecture [19], the NoC is not only viewed
as an interconnection mechanism; instead, it becomes
an element for instructions execution. IPNoSys is a
direct square 2D-mesh with following features: XY
routing policy, a combination of VCT (Virtual-Cut-
Through) and wormhole switching scheme, virtual
channel, credit-based flow control, distributed arbitra-
tion and input buffering.

IPNoSys includes, in the router data path design,
an arithmetic logic unit (ALU) providing the router to
perform all logic-arithmetic operations of the applica-
tions. Therefore, a router accomplishes routing and pro-
cessing tasks and because of that it is called Routing and
Processing Unit (RPU). Besides one ALU, the RPU has
a Synchronization Unit (SU) that enables it to perform
synchronization instructions among RPUs. It is used
shared memory space distributed in four memory mod-
ules placed in the four network’s corners. In the memo-
ry modules, data and applications are stored in packet
form. The memory modules are accessed by Memory
Access Units (MAUs), which are placed also in the net-
work’s corners. Figure 1 shows a 4x4 IPNoSys architec-
ture instance.

In a traditional direct NoC-based architecture,
each router is linked to a processor or other core.
However, as in the IPNoSys the instructions are exe-
cuted inside the RPUs where the packets pass
through, the Von Neumann processors are no longer
needed as in regular NoC-based model. Considering
the whole chip, the area added to routers, due to the
insertion of ALUs and SUs, is compensated with the
absence of processing elements on local ports. There
are only four MAUs in the network’s corners.

The proposed execution mode of instructions
considers a pipelined transmission for packets in the
NoC. In each RPU, instructions on the head of the
packet are executed and then removed, setting the
next instruction in packet order as ready for execu-
tion. The generated result (if any result is produced)
must be inserted in a specific position in the same
packet. The remaining instructions on packet are sent
to the next RPU in the path where the execution pro-
ceeds. As the packet size decreases during execution,
the same happens to the network load. The packet size
does not decrease all the time during instruction exe-
cution, since this is depended of the kind of instruc-
tion being executed. If the executed instruction insert
more result words than it removes words, the packet
increases. If the opposite occurs, the packet size
decreases. Also it is possible that the packet size keep
stable. This happens when the number of results
words is the same of the removed ones. The equation
(1) demonstrates the potential of size reduction.

Where, 
Di: number of inserted data as result of the exe-
cuted instructions in the packet
Dl: number of inserted data by load instruc-
tions
Io: number of original instructions in a packet
in the memory
Do: number of original data in a packet in the
memory

If the equation results 1, during execution, the
application inserts words at the same ratio then its
removes. If the equation results in a number greater
than 1, the packet increases, if the result is lower than
1, it decreases.

The IPNoSys routing scheme was not con-
ceived to just send packets from a specific source node
to a specific destination node in networks on chip.
Routing in IPNoSys is intended to provide enough
operating resources (RPU’s ALU or RPU’s SU) in a
path to execute all instructions in application packets.

In this path each RPU executes the first
instruction of the packet and then removes it.

Do)  (Io
Dl)  (Di

+
+

=oGrowthRati

Figure 1. 4x4 IPNoSys architecture

(1)
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Therefore, the packet destination must be suf-
ficiently distant from the source to execute all instruc-
tions of the application. Thus, to guarantee that all
instructions are executed, a variation of the XY rout-
ing policy, called spiral complement routing algo-
rithm, was developed.

A. Routing Algorithm

The routing algorithm is called spiral comple-
ment and was developed to provide sufficient re-
sources in the routing path to allow the execution of
all instructions on packets. The execution of instruc-
tions is enabled by the property of the spiral comple-
ment algorithm of finding a new destination to pack-
ets when they arrive at its destination and still have
instructions to be executed.

The bases to the proposed algorithm are the XY
routing policy and the complement traffic pattern.
The packets are injected in the system through the
MAUs in the corners. Thus, the first destination of the
packets is the source’s complement, the longest router
in the square network-on-chip. If this path is not
enough to perform all the instructions a new destina-
tion must be designed. This is performed at the end of
the first routing path and the packet is injected once
again. The new choice destination must provide once
again the largest number of execution resources, pro-
viding the longest path. However, to find a new des-
tination different from the original packet source, the
algorithm reduces virtually the NoC size by one row
or one column. Once again the longest destination is
the opposite corner of the reduced network-on-chip.
Thus, the algorithm sends out the packet through a
spiral path, as showed in Figure 2.

Figure 2 shows the packet being injected ini-
tially in the upper left corner. Each arrow represents
an intermediary destination calculated by the spiral

complement algorithm. In this case the end of the spi-
ral is the lower left corner. When a packet passes
through a completed first spiral and still has instruc-
tion to be performed, a second spiral begins at the
lower left corner, ending in the lower right corner.
The execution could continue by a third and forth spi-
ral beginning, respectively, at the lower right corner
and the upper right corner, coming back to the begin
of the first spiral.

The spiral complement algorithm creates a path
that allows the execution of all instructions in any pack-
et. Additionally, in a global view, it distributes the data
traffic between the physical channels of the network.
Notice that each spiral concentrates the data traffic in a
different corner, avoiding the center of NoC. As an
inconvenient constraint, depending on the packet size
and the network dimensions, the circular movements of
the packet could cause a deadlock.

Usually, the deadlock problem in NoCs is
solved through virtual channels. Unfortunately, in
IPNoSys it is not possible to avoid deadlocks using
only virtual channels, due to the circular nature of the
spiral complement routing: when a packet arrives in
the end of a spiral, it still may compete with newer
packets being injected in the network. Thus, the
IPNoSys system treats an imminent deadlock through
a solution that was called local execution. An immi-
nent deadlock is detected when it is not possible to
transmit the packet’s header from the current RPU to
the next in the execution path. In this case the current
RPU (the RPU that keeps packet’s header) maintains
the header and execute the first instruction on the
packet until the moment when it is possible to trans-
mit the packet’s header and the current first instruc-
tion to the next RPU. Local execution means that a
single RPU will remain executing instruction until it
can share this task with others RPUs in the execution
path. As future work, we plan to combine local execu-
tion with virtual channels. Previous experiments [9]
with spiral complement show that the number of time
that a packet should pass through the same physical
channel in the same direction, can be used to deter-
mine the number of virtual channels necessary.

B. Packet Format

The IPNoSys packet corresponds to a variable
set of 32-bits words. There are four types of words in
a packet: header, instruction, operand and terminator.
To identify each kind of word are used four control
bits in which only one is set at a time. Figure 3 shows
the packet format.

The header has three words. The first word has
the current source and destination, the current num-
ber of instruction in the packet, three bits that deter-
mine how to calculate the next new destination and
the 5-bits flag that determines the type of the packet.Figure 2. Spiral Complement path
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Currently there are two types of packets: regular pack-
ets and control packets. The regular packet has the
instructions performed in any RPU. Control packets
have instructions that are performed only in the desti-
nation MAU. The second word has a single identifier
for the packet. The third word is a pointer to the next
instruction into the packet to be performed. The
pointer keeps the number of transmitted words before
the next instruction, including the words performed
by other RPUs. This allows a global counting of the
words that is useful for results insertion in the packet.

The instruction word has the identifier of the
instruction, the number of operands (up to two
operands) and two fields, used, in general, to indicate
the number of the words in the packet that are the des-
tination location of the generated result. Some instruc-
tions use these two fields to indicate the coordinate of
the MAU that will perform the instruction and to indi-
cate the number of operands (more than two).

The operand word and the terminator word
have only one field, with the operand and the ending
pattern, respectively.

C. Routing and Processing Unit

The Routing and Processing Unit (RPU) is a
router with capacity to perform logic-arithmetic oper-
ations and branch instructions. As the architecture
used a 2D-mesh topology, the central RPUs have four
ports and the side RPUs and corner RPUs have three
communication ports (see Figure 1). The corner
RPU, besides the two ports to link it to adjacent
routers, has a third port (local port) to link it to the
MAU (Figure 4).

When a packet arrives in a RPU input buffer,
the type of the packet is checked. If it is a control
packet then it is only routed, using the traditional XY
routing, and transmitted through an exclusive virtual
channel. If it is a regular packet, it is first verified if the
current RPU concerns for the packet destination. This
information is used to calculate a new destination,
according to the spiral complement algorithm. Next,

the packet is routed to a new destination through XY
routing. When the RPU is not the destination, the
packet is only routed using XY routing.

In each output port, there is an arbiter that solves
the conflicts between packets requesting its output as a
traditional arbiter for NoCs. However, before the arbiter
transmits a regular packet, it requests the execution of
the first instruction in the packet. When the first instruc-
tion is a logic-arithmetic or branch instruction, the
arbiter requests the ALU to perform it. If it is a MAU’s
instruction (memory access or application synchroniza-
tion), the arbiter requests the Synchronization Unit
(SU), which will create a control packet to such MAU.
In both cases, the arbiter waits the answer to remove the
instruction and its respective operands and starts the
packet transmission to the next RPU. The number of
words removed from the packet is added to the pointer
in the packet header. If the performed instruction
returns a result, the arbiter maintains this result in a
result buffer waiting the insertion point in the packet
indicated in the instruction. Result buffers must include
one result data (32 bits) and up to two result addresses
(11 bits each). 

When the RPU cannot transmit the packet
header due to lack of buffer space in the receiver RPU
or due to deadlock situation, the arbiter performs the
local execution. Thus, it continues requesting the
ALU or SU to perform the next instruction in the
packet until the transmission becomes possible.

D. Memory Access Unit

In the IPNoSys, an application can be
described through one or more packets that are stored
in the memory. The Memory Access Units (MAUs),
placed in the corners, are responsible to read the pack-
ets from memory and to inject them in the NoC, and
also to read and write data from/to memory used as
operand of instructions. This is done through the

Figure 3. IPNoSys packet format

Figure 4. RPU and MAU architectures
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MAU’s instructions or control instructions (see sec-
tion 4). These instructions are responsible to establish
the communication or synchronization between the
processing modules (RPUs and/or MAUs) or share
computation results among packets. Through these
instructions, a result obtained in a node of the NoC
can be sent to the memory where it can be stored or
used (inserted as data operand) in another packet.
When a RPU identifies one of these instructions, it
creates a control packet with the instruction and sends
it to the specific MAU which will execute it.

Control packets are sent by an exclusive virtual
channel, which is deadlock free once the control pack-
ets are quite short and do not travel through circular
paths. Beyond that, the virtual channel is used only to
transmit control packets.

Therefore, in IPNoSys the processors are
replaced by simple MAUs placed in the corners, which
inject packets in the NoC, performing memory access
and synchronizing the applications with control packets.

4. PROGRAMMING MODEL

A. Instructions set

The IPNoSys’ instructions set correspond to
26 instructions, where 4 of them are arithmetic, 4 log-
ics, 2 shifts, 7 to memory access/synchronization, 7
conditionals and 2 auxiliaries, as showed in Table I.

All instructions are executed by RPUs, except
the memory access and synchronization instructions
that are sent through control packets to a MAU,
where they are executed. That’s the reason such
instructions are called control instructions and the
other ones, regular. The only access memory instruc-
tion executed in RPU is the RELOAD, which carries
the loaded value from memory to the RPU that iden-
tifies the previous LOAD instruction. When a RPU
identifies a LOAD instruction in a packet, it creates a
control packet with this LOAD and sends it to the
specific MAU that will execute such instruction. At
this moment, the execution of the packet is stopped
until the result of LOAD came back through another
control packet, as indicated by RELOAD instruction. 

All instructions follow the format presented in
Figure 3, however, some of them using the fields of
the packet in a different way. Arithmetic and logic
instructions use the fields as explained in section 3.

As the control instructions must be executed in
a MAU, then the fields Result_1 and Result_2 (see
Figure 3) are not used to indicate the position in the
packet where the result have to be inserted. All con-
trol instructions (except RELOAD) use Result_1 to
indicate the MAU’s address that has to execute such
instruction. Only LOAD and SEND instructions use
the Result_2 field as well as the regular instructions.

LOAD uses  Result_2 to indicate the position in the
same packet to insert the loaded value (see Figure
5(a)) brought from the memory by RELOAD. In this
figure, it showed that LOAD needs only one operand,
the memory address. The result of LOAD is brought
back to RPU thought RELOAD, in the unique
operand field, and instead of the MAU’s address, the
Result_1 field indicates the RPU’s address that waits
for the loaded value (Figure 5(b)). 

The SEND instruction, showed in Figure 5(c),
uses Result_2 to indicate the position in other packet,
identified by the packet number in the first operand
field, to insert the value carried in the second operand
field. The value carried through SEND instruction is
inserted in a packet that stay in the memory, before it
is injected.

In IPNoSys, a same value can be stored in many
memory positions though only one STORE instruc-
tion. Thus, the value to be stored corresponds to the
first operand, followed by the n memory addresses, as
showed in Figure 5(d). As the number of operands
can be more than two operands, then the NO field is
set with 3 and the exact value (quantity of address) is
informed in the Result_2 field.

When a MAU receives a EXEC instruction, it
injects immediately the packet that stay in the memo-
ry, identified by the number of packet in the operand
field. EXEC does not use the Result_2 field (see
Figure 5(e)).

However, the injection of a packet can be real-
ized in a synchronized way through the SYNEXEC
instruction (see Figure 5(f)). This instruction identifies
the packet number to insert, in the first operand field,
and stored it together with the number of the other

Table I. Instructions set

Instruction Type Description

ADD Arithme-tic Add 2 integers
SUB Arithme-tic Subtract 2 integers
MUL Arithme-tic Multiply 2 integers
DIV Arithme-tic Divide 2 integers
NOT Logic Negation of 1 value
AND Logic Conjunction of 2 values
OR Logic Disjunction of 2 values
XOR Logic Exclusive-or of 2 values
RSHIFT Shift Shift n bits to right
LSHIFT Shift Shift n bits to left
LOAD M. access Load a word from memory
RELOAD M. access Return a loaded word to packet
STORE M. access Store a word in memory
EXEC Synchro. Order to inject a pac. immedi-ately
SYNEXEC Synchro. Inject a pac. after synchroniza-tion
SYNC Synchro. Synchronization signal
SEND Synchro. Send a value to other packet
BE Condit. Branch on equal
BNE Condit. Branch on not equal
BL Condit. Branch on less
BG Condit. Branch on greater
BLE Condit. Branch on less or equal
BGE Condit. Branch on greater or equal
JUMP Condit. Unconditional branch
COPY Auxiliary Copy a value to same packet
NOP Auxiliary No operation
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packets (next operand fields) that MAU will wait syn-
chronization signals. The injection of this packet only
will be accomplished after all synchronization signals
arrive to this MAU. However, since the MAU is not
blocked, it continues executing other instructions when
they arrive. As the STORE, the SYNEXEC set the NO
to 3 and indicates the number of operands (quantity of
synchronization signals) in the Result_2 field.

Finally, when a RPU finds a SYNC instruction
in a packet, it sends it to a specific MAU (identified in
the Result_1 field) with the number of this packet in
the operand field. The Result_2 field is not used, as
showed in Figure 5(g).

The branch instructions use the fields as the
original purpose, but there is a peculiarity. As branch
instructions don’t produce results, then the Result_1
field is used to inform the position in the packet where
the execution has to take place when the condition is
satisfied. Figure 6 shows the format for branch instruc-
tions. This kind of instruction uses 2 operands that are
compared; if the condition between them is true all
words until the “position to jump” indicated in
Result_1 are discarded. Otherwise, the next instruction
(after the branch instruction) is normally executed.

The instructions set has two auxiliary instruc-
tions: COPY and NOP. The first one is used to repli-
cate a value that can be used as operand for other
instructions. The COPY instruction can be replicated
to two positions in the packet. The NOP instruction
does not produce results or modify the packet.

B. Programmability

The IPNoSys’ programming model is based on
packet structure to comply with the way messages
normally are created for NoCs. In each packet,
instructions are queued according to the data depend-
encies among subsequent operations. Such dependen-
cies establish the order that the packets and the
instructions will appear in the packets. Thus, the
results of previous instructions can be used as operand
in following instructions.

Figure 7(a) shows a simple example of arith-
metic operations, where the third operation (multipli-
cation) has data dependency with the previous two
ones (addition and subtraction). Following the pro-
gramming model, such instructions are piled up in the
packet according to data dependency. For this exam-
ple a packet as shown in Figure 7(b) is created. 

Notice also, that each word of the packet is
numbered, however some number are intentionally
omitted. Such words are omitted since they represent
operands that depend on the previous results. By the
time a packet is injected, each RPU in the packet’s
path removes the first instruction in the packet, exe-
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Figure 5. Control Instructions: (a) LOAD; (b) RELOAD; (c) SEND;
(d) STORE; (e) EXEC; (f) SYNEXEC; (g) SYNC 

Figure 6. Branch instructions format

Figure 7. Simple Example: (a) data dependency; (b) correspon-
dent packet
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cutes it, update the pointer to the next instruction,
transmits it to the next RPU and inserts the result in
the positions informed by Result_1 and Result_2 fields
in the packet structure (see Figure 3). Figure 8(a)
shows the packet at the moment of the execution of
an instruction. Figure 8(b) shows the packet after it
executes the instruction, updates the pointer and
inserts the result in words 7 and 10. The next instruc-
tions will be executed the same way in subsequent
RPUs.

Despite the first instruction is always in the
fourth word in the current packet, it is necessary keep
the global count in the pointer word, since the inser-
tion of results by RPU should consider the words that
have not been included. During this count it is also
necessary to know how many operands each instruc-
tion needs, since these operands could not be present
yet. This is indicated by the number of operands”
(NO) field on instruction.

The instructions set presented before are a tool
to build executable programs to IPNoSys. In this sec-
tion it will be presented the way to use the instruc-
tions set to create programs to IPNoSys.

First of all, the injected packets in the system
are copies of packets that continue stored in the mem-
ory. Thus, it is possible to modify any packet’s value in
the memory and inject it again as a new instance.
Secondly, IPNoSys does not use registers, so the vari-
ables in a program are places in memory that can be
read or written. During the execution the value of
variables and intermediate results are performed in the
packets, as shown in Figure 8. Thirdly, the instruc-
tions are executed in the exact order they appear in
the packet, which hinders a jump to a previous
instruction to be executed (this is in fact, not
allowed). However it is possible to execute loops and
jumps as explained in the first property. Fourthly, a
packet can be injected on demand, depending upon
the number of EXEC or SYNEXEC instructions.
Fifthly, a packet can be made self-run by pointing an
EXEC/SYNEXEC to itself.

Figure 9 presents a simple loop example. The
variable identified by “Address X” will be read from
the memory (LOAD instruction), used in a counter
(ADD instruction) and stored back to memory. The
variable “Address X” will be updated until the value 5
is reached. The arrows in this figure represents where
the instructions’ results have be to inserted (words 7,
10 and 12) in Figure 9(a). 

The LOAD instruction is sent through a con-
trol packet to a MAU which will execute it. The
loaded value comes back through another control
packet, which is incremented, as it is showed in
Figure 9(b).

Immediately after the ADD instruction, the
result of this addition is compared to 5. If two values
are equals then, all words until the word 16 should
be discarded, meaning the end of execution.
However, if the compared values are different, then
the incremented value would be stored at the same
“Address X”, through control packet with STORE
(see Figure 9(b)), and the same packet (packet num-
ber 1) would be self-run, through control packet
with EXEC, in order to perform a new increment
and a new comparison.

This simple example represent a loop that
increments by one any value loaded from memory
until until value 5 is reached, which is equivalent to
the code in C presented in Figure 9(c). The increment
is performed by injecting the same packet (with
updated value) several times until the stop condition is
satisfied. The repetition is driven by the EXEC
instruction which self-runs this packet.

C. Packet Description Language

Since the IPNoSys architecture has a new pro-
gramming paradigm, there are some peculiarities in its
assembly code necessary to implement it. This code,
actually, is called Packet Description Language (PDL)
that reflects exactly what was presented in previous
sections.
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Figure 8. Execution of an instruction: (a) at the moment of exe-
cution; (b) after the execution with inserted words

Figure 9. Simple example: (a) detailed packet; (b) relationship
between the instructions; (c) equivalent code in C language
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The PDL is set of macros that determine the
value of each field in the packets. These macros are
presented in Figure 10.

The three first macros are used to create the
packet’s header. The next three macros have the infor-
mation about the instructions that describe the appli-
cation, then after the macros NINSTRUCTOINS and
before the END can appear several set of macros of
instructions.  Figure 11 presents the example of previ-
ous section described in PDL.

Currently, it is being developed a tool to trans-
late an application written in the C language to PDL.
This tool is the first step toward software compatibility
efforts to allow IPNoSys to be programmed at higher
levels. The idea is to generate PDL descriptions from
control and data flow usually found in C programs. 

The tool should than identify the statements in
C and translates them to one or more packets accord-
ing to control structure of the PDL as it was explained
above.  It is important to notice that this translation is
straightforward in terms of operations, since  the
operations executed by IPNoSys are compatible with
regular logic/arithmetic operations of instruction-set
architectures (see Table I).  

5. RESULTS

The IPNoSys architecture description was im-
plemented in cycle-accurate SystemC [20]. IPNoSys is
fully parametric and scalable in order to allow for differ-
ent instances of the architecture with different character-
istics. In the experiments in this text, it was used a 4x4
NoC with all RPUs having the same configuration. That
is, each RPU has two buffers per input port, associated
with the virtual channels. The buffers are FIFO (First In
First Out) with ten 36-bits words (32 data bits and 4
control bits, see Figure 3). The number of ports depends
on the position of the RPU in the 2D-mesh. Corner
RPUs and side RPUs have three ports and central RPUs
have four ports. The number of input ports is equal to
output ports. In each output port there is an arbiter that,
among other tasks, is responsible for storing the results of
the instructions executed in the RPU in its result buffer.
Buffers with twenty 54-bit words (one 32-bits data and
two 11-bits result address) were used in the result buffer
arbiters. In order to solve the conflicts for the physical
channel the arbiter uses the Round-robin policy. The
RPU uses a crossbar switch partially connected, since one
packet cannot be routed to the same input port. The
ALU in each RPU can execute ten logic or arithmetic
operations with 32-bits operands.

Regarding the chip area of the IPNoSys’
router, it’s not possible yet to generate an accurate
information. However it is possible to compare it, for
example, with RaSoC router of SoCiN Network on
chip [2]. To do this, it is necessary to:  (i) include an
ALU like MIPS ALU; (ii) include some additional
buffering for results registration before including
them in the packet; (iii) change the control flow unit
to work with credit, but not to all packets, only three
words of packet header, one instruction word and two
operands words; (iv) change the routing unit accord-
ing to the spiral complement algorithm.

To validate and evaluate the IPNoSys’ architec-
ture and programmability, two simulation cases are per-
formed. The first simulation case was the execution of a
domain transformation largely used in embedded appli-
cations, the Two Dimensional Discrete Cosine Trans-
form (2D-DCT). Different parallel strategies were exe-
cuted to compare the IPNoSys with a virtual platform
executing an application with several arithmetic instruc-
tions. The second simulation case was a decoding algo-
rithm (RLE – Run Length Encoding) used to evaluate
the performance of the IPNoSys and the comparative vir-
tual platform for an application that performs many
memory access and the number of data output is bigger
than the data input.

Despite the maximum operating frequency and
area evaluation between the architectures cannot be
accomplished, since both of the architecture was im-
plemented in SystemC, such implementations were
done with cycle-accurate and similar critical paths.
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Figure 11. Example using PDL

Figure 10. PDL’s macros
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A. DCT

The Two Dimensional Discrete Cosine
Transform (2D-DCT – we will just call DCT) is large-
ly used in compression process of images. We imple-
mented a DCT using the separability property [21] in
8x8 pixels blocks of the image. This property consists
in calculating 1D-DCT over the rows of an image’s
block, next to calculate 1D-DCT over the result
block’s columns of the previous 1D-DCT.

To evaluate the performance the DCT execu-
tion was also performed in a MP-SoC virtual platform
– STORM [22]. Such platform uses SPARC V8
processor, a direct 2D-mesh 4x4 NoC [23] and it can
use a distributed memory or shared memory (with
and without cache) versions. In all cases it was per-
formed a parallel and a sequential DCT implementa-
tion, as in IPNoSys. 

The IPNoSys DCT implementation was per-
formed in three scenarios, considering the parallelism.
As the DCT process consists of a series of calculations
on 8x8 pixels blocks, we parallelized the DCT block
calculations. Thus, it was considered each parallel
DCT block calculations as an execution flow, which is
started by one MAU. The first scenario is the sequen-
tial implementation which there was only one execu-
tion flow to calculate the DCT in all image’s blocks.
The second scenario the DCT was paralleled through
two execution flows, each one executed on half of the
blocks. And the third scenario the DCT was executed
through four execution flows. IPNoSys’ flows can be
parallelized due the injection of packets at the same
time through different MAUs. 

Figure 12 represents the relationship between
the packets with only one execution flow (sequential
implementation). The “Packet 1” is the starter that
orders the injection of the “Packet 2” (through
EXEC) and “Packet 0” (through SYNEXEC). The
“Packet 2” keeps a counter to control the image’s cur-
rent block. This counter is incremented each time that
“Packet 2” is injected and its value is updated in the
memory (through SEND). When the “Packet 2” is
injected, the counter’s value is compared, if this value
is equal to the number of block of the image, then it
sends a synchronization signal (through SYNC) to
allow injection of the “Packet 0”. Otherwise, the num-
ber of the current block is informed to “Packet 3”
(through SEND) and the injection order to “Packet 3”
is performed (through EXEC). The “Packet 3” is
responsible for deciding if it will run the 1D-DCT on
the rows or on the columns. For each one the “Packet
3” calculates the memory address of the first element
in the current block and informs to “Packet 4”
(through SEND) and orders to inject such packet. The
1D-DCT is calculated in fact in the “Packet 4” on a
block 8x8 representing the pixels (rows or columns). If
it is the first 1D-DCT in the block the data are loaded

from the address informed by “Packet 3” and the
results are stored in the temporary memory addresses.
If it is the second 1D-DCT the data are loaded from
previous temporary memory addresses and the final
results are stored in the specific memory address. The
arithmetic in the “Packet 4” is performed on 8 pixels
(one row or one column), therefore it keeps a counter
that determines if such packet have to be self-run
(through EXEC) until the counter achieves 8 (maxi-
mum of rows or columns). When the counter achieves
8, the execution returns to “Packet 3” which deter-
mines if it is necessary to calculate other 1D-DCT or
to return to “Packet 2” which in turn determines if all
image’s blocks were already calculated, then sends the
synchronization sign to “Packet 0”. By definition, the
“Packet 0” always is used to finalize the application
execution. The unique instruction presents in this
packet is the NOP.

In order to parallelize the DCT, the application
also was implemented using two and four execution
flows. For each execution flow it is necessary the repe-
tition of the packets 2, 3 and 4, that can be injected
simultaneously. Figure 13 shows the relationship
between the packets in the implementation with four
execution flows. Each execution flow is injected by
one different MAU. The difference between the
sequential and parallel implementations is that
“Packet 1” orders the injection for more than one
flow (packets 2, 5, 8 and 11) through a set of EXEC
instructions, and the “Packet 0” wait for more than
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Figure 12. 2D-DCT implementation with one execution flow
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one synchronization sign (sent by packets 2, 5, 8 and
11). Also, the access to the memory is done by pack-
ets 4, 7, 10 and 13.

The three scenarios (one, two and four execu-
tion flows) were compared with the STORM plat-
form, considering the execution time and required
memory. Figure 14 shows that the required memory
for IPNoSys is lightly increased with more parallelism
due the rise of the communication. Also it is bigger
than all STORM experiments.

IPNoSys results are similar to parallel distrib-
uted memory STORM implementation, as it was
expected. This is explained by the parallel and distrib-
uted features that add instructions to synchronization.
In particular, the IPNoSys implementations, include
extra instructions for communication and synchro-
nization between the packets, even the sequential
implementations (as EXEC, SYNEXEC and SEND
instructions). Other reason can be found in the opti-
mizations done by the compiler in the STORM source
code. Contrasting to that, applications for IPNoSys
are still manually written, since the compiler is under
development. 

However, the efficiency of the parallelism in the
IPNoSys system is shown in Figure 15 that compares

the execution time between the three IPNoSys sce-
narios and the STORM instances. The STORM best
case (parallel implementation executed in a cache
read/write version) is faster only than sequential exe-
cution in IPNoSys (1 flow). However, Figure 15
shows that the execution through four flows in
IPNoSys is 3.5 times faster than STORM best case,
which indicates the potential of parallelism of the
IPNoSys system.

B. RLE

Run-Length encoding [24], [25] is a data com-
pression algorithm that is supported by most image file
formats, such as TIFF, BMP, PCX and JPEG also. RLE
is suited for compressing any type of data regardless of
its information content, but the content of the data will
affect the compression ratio achieved by RLE. This
algorithm is both easy to implement and quick to exe-
cute, making it a good alternative to either using a com-
plex compression algorithm or leaving your image data
uncompressed. RLE works by reducing the physical
size of a repeating string of characters. This repeating
string, called a run, is typically encoded into two bytes.
The first byte represents the number of characters in the
run and is called the run count. The second one is the
character that is repeated. For image compression tech-
niques, as JPEG format [26], the RLE can be adapted
using the first byte to inform the number of zeros pre-
ceding other character, once the previous processes
(DCT and quantization) generate large quantity of
zeros. It is the method used in our implementations.

The RLE decoding process is similarly easy to be
implemented, once it is necessary to extract the quanti-
ty of data indicated in a pair of bytes (run). However, an
interesting feature of this application, to IPNoSys exper-
iments, is the fact that the amount of processing output
data is larger than input data. This algorithm was imple-
mented in a sequential and parallel way to be simulated
in IPNoSys. The parallel version was performed with
four execution flows. Other interesting feature of this
application is the larger quantity of traffic to memory
where the decompression results are stored. 
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Figure 13. 2D-DCT implementation with four execution flows

Figure 14. DCT required memory

Figure 15. DCT execution time
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Although the amount of stored data is larger
than loaded data in the RLE decoding algorithm, the
application packets decrease, on average, during the
execution in IPNoSys. To  theoretically demonstrate
this, the equation (1) will be used to calculate the
growth ratio of the application packets. The variables
of this equation are calculated observing the applica-
tion packets statically, independent of the number of
times each packet will be injected.

For this implementation the sum of the all
inserted data of all packets as results was 233. The sum
of the inserted data by load, and in this case was 11.
The algorithm was implemented using 281 instruc-
tions and 233 operands originally presents in the
packets before its injection for execution. Using (1),
the growth ratio was 0.41, a value lower than 1, so the
number of removed words is bigger than inserted
words, that meaning the packets decreasing, on aver-
age, at the end of its execution.

The RLE decompression algorithm was imple-
mented in a sequential and parallel way and simulated
in IPNoSys. Figure 16 and Figure 17 show the organi-
zation and synchronization between the packets in the
both cases. In Figure 16 the “Packet 1” calculates the
load address and stores address that are sent, respec-
tively, to “Packet 2” and “Packet 3”. The “Packet 2”
loads each run (zero quantity (ZQ) and the other value
(N)) from the memory and sends them (ZQ and N) to
“Packet 3”, that decodes them and stores the results in
the memory. “Packet 2” is executed as many times as
quantity of runs (a pair ZQ and N) of the compressed
image. This is controlled by a counter that is sent
through SEND instruction, which updates it in each
execution. When the counter reaches the quantity of
runs the “Packet 2” sends a SYNC signal that provokes
the execution of the “Packet 0”, which to finalize the
application execution.

Figure 17 shows the RLE decompression algo-
rithm parallel version (with four execution flows).
Each flow decodes 1/4 of the compressed data using
pair of the packets: 2 and 3, 4 and 5, 6 and 7 and 8
and 9. Each pair works as the “Packet 2” and “Packet
3” of the sequential version, that is load a run, send it
to another packet to decode it and store it in the
memory as partial results. In the end of execution of
each flow, such packets send one SYNC signal for exe-
cution to the “Packet 10”. This packet is responsible
for indicating to “Packet 11”, “Packet 12” and
“Packet 13” the quantity of data and where the partial
results of the second, third and fourth flows have been
stored. In this way, “Packet 11”, “Packet 12” and
“Packet 13” only move the partial results to the
sequential position in the memory where the first
flow’s results are stored, and so, they constitute the
final result. At the end of the execution of these three
packets, SYNC signals are sent to execute the “Packet
0”, the final packet.

To analyze the performance of this application,
a comparison (in cycles) was made between IPNoSys
and STORM. Figure 18 shows the achieved results. 

It was implemented a sequential and a parallel
version for IPNoSys. As the best performance of the
STORM is a parallel implementation that uses cache
read/write, it was used different instances of this plat-
form with this kind of cache, changing the number of
processors and consequently the NoC dimensions.
Figure 18 shows that the best performance of the
RLE algorithm in STORM happens in the instance
with 15 processors (each one with a cache), however
the execution time still is 2 times higher than the par-
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Figure 16. RLE decompression implementation using one exe-
cution flow

Figure 17. RLE decompression implementation using four exe-
cution flows

006-Sílvio-AF  27.08.10  16:05  Page 64



Packet-driven General Purpose Instruction Execution on Communication-based Architectures
Fernandes, Silva & Kreutz 

allel execution in IPNoSys and 1.6 times higher than
the IPNoSys sequential implementation. This is indi-
cate that despite this application produces more out-
put data than input data, and consequently, there are
a great quantity of control packet to store data in
memory modules, the latency of this packets is com-
pensated by the computation speed achieved by all the
RPUs in the routing way of the packets. 

6. CONCLUSIONS

This paper presented an innovative communica-
tion architecture, based on packet-driven execution,
which does not use traditional processors to execute
general purpose programs: the IPNoSys approach.
Such architecture has simple Memory Access Units
(MAUs) only in the network’s corners, while the
routers become Routing and Processing Units (RPUs).
Applications instructions are bundled in packets and are
executed by the time the packets flow from the source
to the destination, using a new routing algorithm,
called spiral complement. In addition, the packets’ size
decreases during execution allowing new packets to be
injected within the same bandwidth.

The IPNoSys also identifies and avoids dead-
locks by implementing a technique called “local exe-
cution”.

The paper also has presented the IPNoSys pro-
gramming model, including the Instruction Set, pro-
grammability resources and the Packet Description
Language (PDL), used to create executable programs for
IPNoSys. In order to evaluate and validate the architec-
ture and its programmability, two applications were con-
sidered: 2D-DCT and decompression RLE. For each
one, a sequential and parallel version were implemented.
For the parallel version, the relationship between the
packets and its synchronization were also discussed.

The DCT was used to compare the perform-
ance of IPNoSys against the performance of a MP-
SoC cycle accurate virtual platform, called STORM.
This simulation showed that IPNoSys required the
same amount of memory than the STORM platform.

However, the execution time in the IPNoSys was 3.5
times smaller than the STORM best case. This shows
the efficiency of the parallelism in this system.

The IPNoSys performance for the RLE algo-
rithm was also better than STORM. This has shown
how the parallelism could be explored in IPNoSys
with an application where the output processing data
is much larger than input ones. This means that the
high data rate demanding on memory access, could be
better implemented in IPNoSys then in the STORM
platform.

Future works includes: utilization of virtual
channel to send regular packets; new routing algo-
rithms; RPU configuration before the application exe-
cution; compiler development; FPGA prototyping for
chip area and power dissipation evaluation and larger
system simulations using clusters of IPNoSys.
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