
67Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

Design Validation of Multithreaded Processors
Using Threads Evolution

D. Ravotto, E. Sanchez, M. Sonza Reorda, G. Squillero

Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy
Contact author e-mail: ernesto.sanchez@polito.it

1. INTRODUCTION

Most history of multithreaded processors starts
in 1964, with the peripheral processing units in
Seymour Cray’s CDC 6600. However, multithreading
as a technique to further exploit instruction-level par-
allelism, is much more recent. It becomes widely
adopted in the desktop market only in the 2000s, and
nowadays represents an effective solution for coping
with market requirements of modern off-the-shelf
electronic devices. Modern microprocessors exploit a
significant quantity of hardware resources to allow
multiple threads execution in an overlapping fashion,
increasing the global throughput.

A drawback stemming from the inclusion of
high-performing microprocessors in electronic devices
is the increase in development times. Indeed, verifica-
tion, validation and testing (VV&T) methodologies
have been hardly able to keep the same pace as pro-
duction methodologies.

The design of electronic devices is commonly car-
ried out through an incremental process delivering a
more complex description of the device at every step.
The methodology allows designers to progress towards
the final product in a gradual manner, decreasing at
every step the abstraction level of the description, up to
obtain the final model. The first design step produces
the most abstract description, which describes the gen-

eral behavior of the device leaving internal details out,
whereas the last steps provide low-level descriptions,
with details close to the actual implementation of the cir-
cuit. Clearly, the lower the abstraction level, the higher
the complexity of the resulting model.

Unfortunately, no mature VV&T technique is
able to take advantage of the higher-level models in
order to reduce the efforts required to validate the
lower-level ones, and hence of the final product.

Considering VV&T in general, it is possible to
state that almost all techniques can be classified either
as formal or simulation-based. Formal methodologies
exploit mathematical techniques to prove specific
properties, such as the absence of deadlocks or the
equivalence between two descriptions. Such a proof
implicitly considers all possible inputs and all accessi-
ble states of the circuit. Differently, simulation-based
techniques rely on the simulation of a set of stimuli to
unearth misbehaviors. A simulation-based approach
may therefore be able to demonstrate the presence of
a bug, but will never be able to prove its absence.
Indeed, the user may assume that a bug does not exist
with level of confidence related to the quality of the
simulated test set. The generation of a qualifying test
set is the key problem with simulation-based tech-
niques. Different methodologies may be used to add
contents to such test sets, ranging from deterministic
to pseudo-random.

ABSTRACT1

Within the design arena of modern devices based on cutting-edge processor cores, the availability
of effective verification, validation and test methodologies able to work on high-level descriptions of
processor cores represents an interesting advantage, since it can dramatically reduce the overall
time for design and manufacturing, while improving yield and quality. In this paper we propose a
semi-automatic test program generation technique able to target modules in modern computer archi-
tectures that implement the multithreading paradigm. The methodology starts from high level
descriptions of processor cores and using an incremental multi-run approach produces, with very
limited manual intervention, a test set able to maximize verification metrics. Experimental results
gathered on a couple of real complex designs (the OpenSPARC™ T1 and T2) show the effective-
ness of the proposed methodology.

Index Terms: SBST, multithread processors, functional validation, automatic program generation.

007-Ravotto-AF 27.08.10 16:06 Page 67

Design Validation of Multithreaded Processors Using Threads Evolution
Ravotto, Sanchez, Sonza-Reorda & Squillero

68 Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

Theoretically, formal techniques are able to
guarantee their results, while simulation-based
approaches can never reach complete confidence.
However, the former require an enormous computa-
tional power, and therefore may not be able to pro-
vide result for a complex design. Moreover, to enable
their use, formal methodologies are routinely used on
simplified models or with simplified boundaries con-
ditions. Thus, their result is absolutely exact, but the
model used to calculate it was not. This introduces a
certain amount of uncertainty in the process [2].

Nowadays, simulation-based techniques domi-
nate the VV&T arena for microprocessors, with formal
methods bounded to very specific components in the
earliest stages of the design. When tackling micro-
processors, a set of stimuli has most likely the form of
an assembly program. Such test programs, whose
introduction dates back to the 80s [4], are executed by
the device under test, but their purpose is not to cal-
culate a certain value or to solve a problem, but rather
to excite the different supported functions, and to
expose the internal information. Test programs have
been exploited in the so-called Software-based Self-test
(SBST) [5], where the goal is to make evident a differ-
ence between a faulty device and a working one.

Multithread microprocessors exploit complex
architectural paradigms that are both hard to be tack-
led by hand and greatly limit the effectiveness of ran-
dom-based approaches. Consequently, the creation of
a suitable set of test programs is liable to be a bottle-
neck in the design process.

Feedback-based techniques are used to iterative-
ly improve a test set in order to maximize a given tar-
get measure. The improvement procedure is fully
automatic and exploits the result of the simulation to
drive the creation of new stimuli. However, simulation
of low-level descriptions could require enormous
efforts in terms of computational time, memory occu-
pation and hardware.

In this work we propose a simulation-based
method able to efficiently exploit high-level descrip-
tions of multithreaded microprocessor cores for gen-
erating effective test programs of critical modules. The
methodology is mostly automatic and makes use of
the feedback from the simulation. The proposed
methodology enhances and extends to multithreaded
complex microprocessors the idea presented in [3].

The feedback-based generation process is driv-
en by an evolutionary algorithm, and exploits a high-
level simulator. The method is focused on the genera-
tion of multithreaded assembly test programs target-
ing the maximization of a set of metrics. The evolu-
tionary algorithm was upgraded to generate, represent
and effectively manipulate multithreaded programs.
Moreover, in order to minimize the required compu-
tational effort, the approach is organized in a series of
runs where, at each step, the best test program gener-

ated is added to the final test set. Preliminary steps on
this work has been presented in [6] and [7].

To demonstrate the suitability and the scalability
of the approach, we tackle the OpenSPARC™ T1 and
OpenSPARC™ T2, two rather complex microproces-
sors developed by SUN Microsystems. The high-level
models of the two microprocessors are publicly avail-
able from SUN Microsystems [8]. We generated test sets
for two different characteristic internal modules.

The experimental results clearly show that the
method is effective both in reaching high figures when
a given coverage metric is considered, and in generat-
ing test programs able to cover very specific corner
cases, that could hardly be managed through a ran-
dom approach. Our method requires a very limited
effort in terms of manual intervention, while the
required computational power can be traded-off by
running it separately for different components of the
microprocessor.

The rest of the paper is organized as follows.
Section II recalls some concepts about design valida-
tion and presents the family of OpenSPARC™ micro-
processors. Section III describes the proposed
approach. Section IV presents the case study and
reports some experimental results. Section V con-
cludes the paper.

2. BACKGROUND

A. VV&T approaches

Design VV&T methodologies have been devel-
oped in a multi-flavored spectrum. The first sharp dis-
tinction that can be made is between formal and sim-
ulation-based techniques.

Formal methodologies use mathematical tech-
niques to prove that a design possesses certain prop-
erties, such as conformity to given specifications.
Generally speaking, formal verification may always be
seen as a form of theorem-proving within a given logic
system [9]. But, in practice, research in this field falls
within various sub-categories, such as: automated the-
orem proving, model checking, equivalence checking,
and SAT solver.

While theoretically formal methodologies are
able to verify any property, the computational
resources required become significant even for medi-
um-complexity designs. Moreover, when a formal
method fails to provide a result, nothing sensible can
be said on the examined property.

In order to limit the CPU time and memory
requirements, formal methodologies are often applied
on simplified models, or sub-parts of the original
design. However, an over-simplification in the former
case, or a mistake in setting the boundaries conditions
in the latter, may impair the reliability of the result.

007-Ravotto-AF 27.08.10 16:06 Page 68

Design Validation of Multithreaded Processors Using Threads Evolution
Ravotto, Sanchez, Sonza-Reorda & Squillero

69Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

Simulation-based methodologies aim at uncov-
ering design errors by thoroughly exercising the avail-
able model. Briefly speaking, a VV&T process based
on simulation requires three basic elements to be per-
formed: the input information (also called set of stim-
uli), the model of the device under evaluation (also
called design or device under test), and finally the
response checker, which generates the pass/fail infor-
mation regarding the inspection process based on the
comparison between the observed and the expected
behavior.

It is clear that depending on the design stage,
the audit process could be performed in different
ways. For example, depending on the design state, the
method could be based on a logic simulator or resort
directly to the circuit if the device is already built.

Simulation-based methodologies are strongly
dependent on the quality of the set of stimuli used to
excite the design. These methodologies are seldom
exhaustive and only consider a limited sub-set of pos-
sible circuit behaviors. Since the quality of the results
depends on the percentage of applied stimuli with
respect to the total possible ones, they never achieve
100% confidence of correctness in practical cases.
However, a qualifying test set may give a reasonable
confidence on the absence of problems.

Producing high-quality set of stimuli is there-
fore a major issue in the VV&T area, which also
requires asserting the quality of a set of stimuli.

Borrowing the idea from software testing [1],
it is possible to define a coverage metric as the meas-
ure of how thoroughly exercised a device under test
is. Code coverage metrics identify which code struc-
tures belonging to the circuit description are exer-
cised by the set of stimuli, and whether the control
flow graph corresponding to the code description
has been thoroughly traversed. The structures
exploited by code coverage metrics range from a sin-
gle line of code to if-then-else constructs. Nowadays,
commercial logic simulators provide the users with
the possibility to extract, during simulation, infor-
mation regarding coverage metrics; some of the
most typically used ones are: statement coverage,
branch coverage, condition coverage, toggle coverage,
among others. The capacity of a given input stimuli
to activate specific features of the model may be
quantified, and coverage metrics for hardware verifi-
cation can be defined to assure the adequacy of the
set of stimuli, and the collected information about
coverage could be exploited as an useful termination
test criterion [2]. The higher the coverage values
obtained by a given set of stimuli, the higher the
confidence in the design it can provide. Intuitively,
high coverage values imply high system activation.
However, it is worth noting that coverage does not
imply that the design fully conforms to the specifica-
tions.

Specifically regarding to microprocessor cores,
some VV&T techniques based on formal approaches
have been exploited to tackle pipelined designs
[13][14], as well as superscalar ones [15]. However,
the applicability of such techniques within an industrial
design flow may need a considerable human effort.
Consequently, industry adopts formal methods when
facing only single modules or when boundary condi-
tions allow to significantly constraint the targeted task.

On the other hand, constrained-random test
generation develops random test sets following con-
strained generation processes [16][17][18][19].
These techniques usually exploit templates in which
the structure of each program fragment to be gener-
ated, as well as the parameters to be randomized, are
previously defined. Though, such techniques are very
challenging when targeting real complex designs.

An evolution of the constrained-random meth-
ods is based on the exploitation of feedback informa-
tion able to drive the generation process. These tech-
niques [20][21][22][23] dynamically and automati-
cally adapt the generation process resorting to cover-
age feedback results, in order to improve the generat-
ed programs. Moreover, they generate and simulate a
huge quantity of programs, but the generation process
leaves users with only a small set of test programs.

Authors in [24] presented an efficient test gen-
eration technique based on decomposition of both
design and properties for functional validation of
pipelined processors. Results gathered on a multiple
issue microprocessor core demonstrate the suitability
and efficiency of the proposed approach.

Finally, talking about chip multithread proces-
sor cores, some VV&T strategies have been also pro-
posed in order to couple with modern issues. For
example, regarding validation techniques, in [7] the
authors proposed a feedback based methodology that
exploits an automatic generator in order to generate
validation programs for a complex processor core.
Concerning testing issues, in [25] the authors pro-
posed a novel methodology to speed up the execution
of self-test routines in a multithread processor chip.

B. Basics on OpenSPARCTM processor cores

The OpenSPARCTM processor core family is
designed exploiting the chip multi-threaded (CMT)
processor architecture paradigm. The processor fami-
ly fully implements Sun’s Throughput Computing ini-
tiative for the horizontal system space. Throughput
Computing is a technique that takes advantage of the
thread-level parallelism [8].

The basic principle behind Throughput Com-
puting is that exploiting ILP (Instruction Level Paral-
lelism) and deep pipelining has reached the point of
diminishing returns, and as a result current micro-
processors do not utilize their underlying hardware very

007-Ravotto-AF 27.08.10 16:06 Page 69

Design Validation of Multithreaded Processors Using Threads Evolution
Ravotto, Sanchez, Sonza-Reorda & Squillero

70 Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

efficiently. For many applications, the processor is usu-
ally idle most of the time waiting on memory, and even
when it is executing, the processor is often able to only
utilize a small fraction of its wide execution units. So
rather than building a large and complex ILP processor
that sits idle most of the time, a number of small, sin-
gle-issue processors that employ multithreading are
built in the same chip area. Combining multiple proces-
sors on a single chip with multiple strands or threads
per processor, allows very high performance for highly
threaded applications. This approach is usually called
thread-level parallelism (TLP).

The one disadvantage to employing TLP over
ILP is that execution of a single thread will be slower on
the TLP processor than an ILP processor. However,
current processors running at high frequencies, a strand
capable of executing only a single instruction per cycle
is fully capable of completing tasks in the time required
by the application, making this disadvantage a nonissue
for nearly all applications [8].

3. PROPOSED APPROACH

A. Introduction

Multithreaded processor cores (as other mod-
ern processor architectures) rely on the efficient dis-
tribution of independent instructions among the
hardware resources available into the processor; for
example, in the case of fine grained multithreading
architectures, at every clock cycle it is required to
switch the context from the current thread to the
next available one. In fact, design engineers are
required to include into the processor core complex
modules able to handle with all these scheduling
requirements.

Test program generation for these complex
architectures is really a challenging task: considering
multithreaded processors, the search space to be
explored is even larger than for other processors, and
includes all the possible combinations of sequences of
instructions (one for each thread).

The real challenge in a multithreaded environ-
ment is to find a thread-oriented test program that
runs in all the processor threads, and it is able to fully
excite a specifically targeted module. This is not easi-
ly performed neither resorting to a random-based
approach nor by hand, even though a deep knowl-
edge of the processor core is available. As a matter of
facts, facing test program generation by exploiting
simulation-based approaches that rely on random or
deterministic methods may require enormous efforts
in terms of computational time and memory occupa-
tion.

Finally, it is worth mentioning the importance
of devising methods able to automate as much as pos-

sible the generation process, reducing the need for
skilled (and expensive) human intervention, and guar-
anteeing an unbiased coverage of corner cases.

The semi-automatic methodology we propose
in this paper faces the above issues: it is built on a suit-
able feedback-based generation algorithm and a simu-
lation-based program evaluator. The candidate test
programs are simulated exploiting a high-level model
of the targeted microprocessor. Additionally, a step-
by-step schema is implemented in order to increase
the efficiency on the generation process.

B. Environment architecture

Figure 1 reports the conceptual view of the
proposed methodology. The whole approach is divid-
ed in two main parts: the first one is performed by
hand, and is related to the general framework config-
uration; the second one is devoted to automatically
generate test programs and it is based on a multi-run
process where an evolutionary algorithm is exploited
for the automatic generation of assembly programs.

The main sub-phases of the first part are
described in the following:

• Module selection: the target module is select-
ed and identified by the validation engineer.

• Metrics selection: the high-level metric(s) to
be maximized are chosen taking into account
the description style of the processor model.

• Environment settings: the validation engineer
must fulfill a series of requirements in order
to setup the generation environment: com-

Figure 1. Conceptual view of the proposed approach

007-Ravotto-AF 27.08.10 16:06 Page 70

Design Validation of Multithreaded Processors Using Threads Evolution
Ravotto, Sanchez, Sonza-Reorda & Squillero

71Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

pile the constraint library, describing the
processor assembly syntax; chose the set of
instructions among the described ones to be
used in every generation run; decide the
parameters characterizing every generation
run, such as the length of the programs, the
programs size, etc; define the termination
conditions for both every single run, and the
overall multi-run experiment.

The second part of the generation process is
divided into a series of automated steps (i.e., evolu-
tionary runs): in every run, a series of test programs
are generated, evaluated and eventually improved; at
the end, only the best program is preserved in the final
test set. It should be noted that since herein the pro-
posed approach targets a multithread processor core,
the programs generated are composed by different
pieces of assembly code that compile independent
threads. In the automated part, the generation process
is handled by the Multi-run Manager that, using the
configuration information previously defined by the
test engineer, launches a series of evolutionary runs
exploiting the evolutionary algorithm until satisfacto-
ry figures are obtained with respect to the chosen
metrics, or a given ending condition is matched. Thus,
the main goal of the multi-run manager is to activate
with the right parameters every evolutionary run, and
to collect the final set of test programs.

The rationale for this step-by-step methodolo-
gy is that in general it is not possible to satisfactorily
solve the addressed problem within a single run, i.e.,
by generating only a single test program with a single
set of parameter values, especially when complex mod-
ules are targeted. Moreover, this multi-run adaptive
execution allows the evolutionary algorithm to better
and faster focus on the targeted module, thus reduc-
ing the generation time, since long test programs
must be only evaluated during the first run.

Once the test engineer provides configuration
information to the multi-run manager, the automatic
process is ready to start. The first evolutionary run is
called a winnowing run, since the test program left by
this iteration must be able to cover those parts of the tar-
geted module that are relatively easy to excite using for
example, long random generated programs. From the
second iteration on, the multi-run manager progressive-
ly diminishes the dimension of the test programs to be
generated, whereas varies the set of instructions, trying to
excite specific and not already covered parts of the
design. It is important to notice that at the end of each
run the covered items are actually marked as covered, so
that the generation process focuses only on those parts
that are not yet excited, speeding up simulations. Each
run is terminated when the evolutionary algorithm
reaches a condition in which it is considered that it is not
possible to further improve the targeted metrics, or when
a maximum number of programs have been simulated.

In every run, the delivered test program, (i.e.,
the best one) is picked up by the multi-run manager
and preserved in the final test set. In addition, the
multi-run manager reconfigures the simulation envi-
ronment removing the covered items, changing the
settings, and starting a new evolutionary run (if the
termination condition is not yet reached).

It should be noted that once the framework has
been set up for a specific module it can be easily used
to tackle other modules by only modifying the feed-
back value provided to the evolutionary engine, and
by tuning the parameters for the multi-run execution.

Figure 2. Multi-run architecture

C. Generation loop

Figure 2 presents in more details the environ-
ment defined to implement the proposed approach,
highlighting the elements that intervene in the gene-
ration loop.

Every run launches the evolutionary engine,
which plays the role of the automatic test program
generator. The engine generates test programs start-
ing from a set of constraints that describe the syntac-
tic appearance of the test programs. This information
is organized in the constraints library. This library lists
all syntactically correct instructions and all the valid
operands for each one. Since we are in a multithrea-
ded environment, also the thread scheme and the
number of threads to be generated must be encoded
in the constraints library. Based on both the con-
straints library and the settings provided by the multi-
run manager, the evolutionary engine generates syn-
tactically correct test programs; each of them is evalu-
ated by the Evaluator using a simulation environ-
ment, and a measure of how well it solves the given
problem is fed back to the evolutionary engine. The
evolutionary engine allows to simultaneously maxi-
mize all the selected metrics with a defined priority.

007-Ravotto-AF 27.08.10 16:06 Page 71

Design Validation of Multithreaded Processors Using Threads Evolution
Ravotto, Sanchez, Sonza-Reorda & Squillero

72 Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

D. Evolutionary engine and genetic operators

A preliminary version of the evolutionary tool
used here is described in [3]: this evolutionary algo-
rithm exploits a suitable internal representation for
programs, based on graphs, and basically works as fol-
lows: an initial set of random test programs (called
individuals) is created and evaluated with respect to
an evaluation function; then, the best fitted programs
are chosen to be improved by the application of one
of the so called genetic operators: mutation and cros-
sover. This process iterates until a stopping condition
is reached. The approach has been able to successfully
deal with the generation of test programs tackling dif-
ferent goals: processor testing [11], verification [3]
and post-silicon verification [12]; however, in order to
deal with multithreaded processors, it is necessary to
introduce special features that allow the evolutionary
optimizer to effectively manipulate and evolve test
programs for multithreaded processor cores. In this
paper, we present an improved version of the evolu-
tionary algorithm able to effectively generate multi-
threaded test programs.

The new version of the algorithm generates,
manipulates and improves multithreaded test pro-
grams; every single program is internally represented as
the union of N different programs, being N the num-
ber of processor threads. Every one of these programs
must be enriched and improved contemporarily in
order to reach a useful final test program that exploits
the actual interdependency among the different
instructions on every single thread. In the following, a
complete description of the new features of the evolu-
tionary engine that directly regard the automatic gen-
eration of multithreaded test programs is reported.

E. New multithread-oriented features

Test programs for SMT processor cores mainly
differ from predecessor ones in the composition of
every test program: in the SMT case, every single test
program is composed of a set of N threads, whereas
the effectiveness of the test program is evaluated con-
sidering the parallel execution of all the threads.
Conceptually, every single thread executes an inde-
pendent program whereas sharing hardware resources
with other threads. However, from the generation
point of view, it is important to improve the single
thread, as well as to maximize the interaction among
the parallel executions of the different threads.

In the version of the tool oriented to SMT
processors which is proposed here, the evolutionary
engine is able to act separately on both the whole test
program and the single thread by exploiting different
genetic operators.

The evolutionary tool is able first to create ran-
dom (but correct) multithreaded test programs and

then to independently evolve them by applying suit-
able thread-oriented evolutionary operators.

In other words, new genetic operators work
specifically on independent threads by inserting, delet-
ing and mutating instructions. In addition, the evolu-
tionary engine also exploits an inter-thread crossover
operator, allowing code recombination between
threads, thus permitting the evolutionary optimizer to
exchange valid pieces of code between the different
threads of a single program, as well as between threads
in different test programs. In this way, the method
leverages easy exchange of outstanding pieces of code
between different threads.

Figure 3. Thread-oriented crossover

Figure 3 graphically represents the application
of the crossover operator between two threads of the
same program.

Let us suppose that TP1 (in the upper part of
the figure) represents the selected program that
undergoes the thread-oriented crossover. TP1 is com-
posed of two threads (th 1 and th 2), each one of them
containing three sections separated by dashed lines.
Let us also suppose that in both threads of TP1 the
grayed lines demark the pieces of code selected to be
exchanged during the application of the mentioned
crossover inter-thread operator. The resulting individ-
ual (TP1’) is depicted in the bottom part of the figure.

It is interesting to highlight that the evolution-
ary optimizer is able to safely exchange pieces of code
between threads since every test program and in par-
ticular every thread is internally represented as an
acyclic graph. The graph-based representation of test

007-Ravotto-AF 27.08.10 16:06 Page 72

Design Validation of Multithreaded Processors Using Threads Evolution
Ravotto, Sanchez, Sonza-Reorda & Squillero

programs allows the evolutionary tool to copy, trans-
fer, and even eliminate code segments without losing
important details regarding the program structure for
pieces of code such as subroutines and jumps.

On the other hand, the whole test program is
also eventually modified by the application of genetic
operators that, as in the previous versions of the evo-
lutionary optimizer, elaborate on the complete pro-
gram structure.

In order to measure the interaction between
threads, the evaluation of every program is performed
on the whole multithreaded test program, and the
feedback information gathered are used by the evolu-
tionary tool to adapt the generation process.

4. CASE STUDY

We evaluate our approach on two processor
cores that exploit the multithreading processor para-
digm. In the first case, we deal with the pick unit of
the OpenSPARC™ T2 processor. Considering the
style of the processor description, in this case the co-
verage metric we selected is condition coverage, which
measures which possible values each conditional
expression takes during simulation, tracking the sensi-
tized vectors (those that change the result of the over-
all expression) for each conditional expression.

In the second experiment, we exploit the pro-
posed approach for the generation of validation pro-
grams for the switch logic unit of the OpenSPARC™
T1. In this case, taking in consideration the style of
the available description of the processor model, the
metric selected is toggle coverage, that reports the
number of nodes or storage elements that toggle at
least once from 0 to 1 and at least once from 1 to 0.

In both cases, the generation environment was
developed resorting to the multithread-oriented ver-
sion of the tool named µGP3 [26]. The tool counts
about 42,000 lines of C++ code.

The multi-run manager, described previously,
was developed in Perl as well as some simulation scripts.

The constraint library is written in XML lan-
guage, counts about 4,500 lines and describes the
SPARC V9 instruction set architecture. The con-
straints are divided in sections, and for each one the
number of different instances in the test program gen-
erated must be set. In each section we defined some
macros, each of them representing a valid instruction
or set of instructions. In this case we defined two sec-
tions: the first represents a thread (we set up the tool
to generate eight different segments of this type) and
the second represents subroutines (we set up the tool
to generate ten different segments of this type).
Writing the constraint library required to the test
engineer less than two working days. Clearly, the gen-
eration environment settings differ depending on the

faced processor core: in the case of T2 processor core,
for example, every single generated test program is
composed of eight threads, whereas only four are
required in the T1 case.

Regarding the multi-run mechanism, we set to
60,000 clock cycles the maximum duration of the first
run (excluding privileged instructions), and to 20,000
clock cycles the maximum duration for all the other
runs (with all the possible instructions).

In the following, we briefly describe both
processor cores as well as the tackled modules. In both
the faced experiments, as highlighted by the experi-
mental results, the proposed approach reached out-
standing results compared to a pure random-based
approach. It is important to note that the tackled mod-
ules are specific of the multithreaded architecture, and
similar modules can be found in other processors, too.
All the reported experiments have been performed on
a couple of HP xw 8600 Workstations with 8 GB of
RAM running Linux. The simulation environment
used is based on the verification suite provided by Sun
Microsystems for both the considered processor cores.

A. OpenSPARCTM T2

OpenSPARCTM T2 is a 64 bit open-source
microprocessor developed by SUN Microsystems and
freely available at [8]. OpenSPARCTM T2 implements
the chip multithreading (CMT) paradigm and counts
on eight SPARC physical processor cores. Each
SPARC core is able to support eight strands (i.e., a vir-
tual processor able to run a software thread).
Internally, every processor core divides its eight
strands in two groups of four strands each. In order to
increase the throughput, each SPARC core contains
two integer execution pipelines (one per strand
group), one floating-point execution pipeline, and
one memory pipeline (shared by the eight threads).

The OpenSPARCTM T2 can execute up to 64
simultaneous threads, but in every SPARC core at
most two strands can be active at the same clock cycle.
The strands are switched at each clock cycle choosing
the least recently issued available strand within each
group. A strand is marked as unavailable if it encoun-
ters a long latency event, such as a cache miss, a float-
ing point operation, etc.; no instructions are picked
from an inactive strand until the long-latency event is
terminated. The execution of the others strands con-
tinues normally while the long latency operation is
executed.

Each SPARC processor core has a 16 KB, 8-
way associative instruction cache, an 8 Kbytes, 4-way
associative data cache, an 64-entry fully associative
instruction TLB, and an 128-entry fully associative
data TLB, that are shared by the eight strands. The
eight processor cores are connected through a cross-
bar to an on-chip unified 4 Mbytes, 16-way associa-

73Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

007-Ravotto-AF 27.08.10 16:06 Page 73

Design Validation of Multithreaded Processors Using Threads Evolution
Ravotto, Sanchez, Sonza-Reorda & Squillero

tive L2 cache (64-byte lines) banked eight ways. The
L2 cache connects to four on-chip DRAM con-
trollers.

The main components of the OpenSPARCTM

T2 core are:
• The Instruction Fetch Unit (IFU), which dis-

tributes instructions to the rest of the core,
while updating both the program counters
(PC) for each thread, and the instruction
caches. The IFU is composed of three sub-
units: the fetch unit, the pick unit, and the
decode unit.

• The Execution Unit (EXU), which executes
almost all the integer operations, with the
exception of the multiply and division
instructions.

• The Load and Store Unit (LSU), which man-
ages memory accesses between the processor
core and the data caches (L1 and L2).

• The Cache Crossbar (CCX), which connects
the 8 SPARC cores to the 8 banks of the L2
cache. A maximum of 8 operations on the
memory can be processed simultaneously.

• The Floating-Point and Graphics Unit
(FGU), which implements the SPARC V9
floating-point instruction set, integer multi-
ply, division, and population count (POPC)
instructions.

• The Trap Logic Unit (TLU), which handles
exceptions, trap requests, and traps for the
SPARC core. A trap is a vectored transfer of
control to supervisor software through a trap
table. The TLU maintains the processor state
related to traps as well as the Program Coun-
ter (PC) and the Next Program Counter
(NPC).

• The Memory Management Unit (MMU),
which handles all memory accesses validating
the permission to access to the requested
address.

B. Module and metric selection on the T2
processor

We evaluated our approach on the pick unit of
the OpenSPARC™ T2 processor, which is the module
mainly responsible for the management of the differ-
ent threads to be executed in parallel. In addition, this
module is distinctive of a multithreaded processor and
is not present in other types of processors. Targeting
the pick unit is particularly critical, since a suitable test
program must properly combine the execution of sev-
eral threads, making this unit the most suitable part of
the OpenSPARC™ T2 where to evaluate the
approach. The module is located within the instruc-
tion fetch unit (IFU) and at each cycle is in charge of
selecting two threads out of eight for the execution.

Its correct behavior is essential in order to guarantee
both proper functioning and maximum performance
of the processor.

The threads are organized in two thread groups
of four threads. The pick unit contains a state machine
for each thread with two possible states: READY or
WAIT. A thread can be picked if it is in a READY
state. A thread is in a WAIT state if any wait condition
exists for the thread and it remains in a WAIT state
until the condition or the conditions that caused the
transition to WAIT are resolved or the thread is
flushed. The details about the functioning of the pick
unit can be found in [8].

The RT level description of the pick unit is
written in Verilog and counts 3,688 lines. As men-
tioned before, at each clock cycle the pick unit needs
to check a number of thread conditions. The RT-level
description is thus organized in a significant number
of signal conditional assignments that check all the
possible WAIT / READY conditions. For this reason,
the obvious choice for the main metric to drive the
generation process is Condition Coverage. This met-
ric is very meaningful for the pick unit; in fact, as men-
tioned before, a thread could transition to the wait
state due to several conditions and we need to ensure
that all of them are covered by the test programs in
order to fully excite the unit. Moreover, in the T2 pick
unit description other coverage metrics like Statement
Coverage, Branch Coverage, FSM coverage have a
number of items to be monitored negligible, or null
(as mentioned before, the RT-Level is organized with
a significant amount of signal conditional assignments
that are always all executed). On the other hand, the
number of conditions is 29,394.

C. Experimental results

Table I shows the results obtained on the pick
unit when applying the multi-run proposed methodol-
ogy. The table reports for every generated test program
the percentage of the attained condition coverage, the
code size, and the duration (in terms of clock cycles) at
the end of every evolutionary run. The condition cov-
erage reported is the cumulative value obtained by the
set of programs collected until the referred run and not
by the single program; the code size and the test pro-
gram duration, on the other hand, are related to the
best test program produced in each run.

74 Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

Table I. Results obtained on the OpenSPARCTM T2 processor.

Run # Condition Code Test program
Coverage size duration

[%] [KB] [CC]

1 90.40 53.376 25,165
2 93.79 11.168 13,680
3 95.90 10.680 9,568
4 96.37 6.976 4,712

007-Ravotto-AF 27.08.10 16:06 Page 74

Design Validation of Multithreaded Processors Using Threads Evolution
Ravotto, Sanchez, Sonza-Reorda & Squillero

The methodology is able to achieve 96.37% of
condition coverage by executing the complete test set,
which lasts 53,125 clock cycles. The amount of com-
putational time required for generating the complete
test set is about 5.5 days: 2.5 days for the first win-
nowing run and about 1 day for each of the following
runs. The required time for performing the simulation
of each generated program corresponds to about 6 to
8 minutes for the first winnowing run and about 2 to
3 minutes for the following runs, since these are
shorter programs. The generation of the complete test
set requires the simulation of about 2,000 programs;
it is interesting to note that the additional computa-
tional effort required by the evolutionary engine is
negligible.

In order to further assess the proposed metho-
dology we performed a comparison against a purely
random method. We randomly generated several test
programs counting in average about the same number
of instructions of the test programs generated in the
first run of the proposed approach. Every random
program is evaluated, and those programs able to
improve the addressed condition coverage in the pick
unit are retained in the final test set. Similarly to the
proposed approach, 10 different experiments were
simulated considering about 2,000 test programs in
every launch. In this case, however, the generation
process for every run lasts about 7 days. It is interest-
ing to note that the generation time is higher since all
the randomly generated programs count with a simi-
lar length of the test programs generated in the first
run of the proposed approach, avoiding the gradual
decrease in the length of the test programs presented
in the proposed approach. Table II reports a compar-
ison between test sets of the best run obtained
exploiting the purely random approach and of the
proposed approach, highlighting the cumulative con-
dition coverage obtained by the test set and the cumu-
lative number of clock cycles required to execute the
complete set.

D. Covered Corner Cases

An analysis performed on the random resistant
conditions left uncovered by the random experiments
(while covered by the evolutionary-based approach)
shows that the random approach is not able to cover
some interesting corner case, such as the store buffer
full wait condition. The load and store unit has, for
each thread, a buffer with eight entries containing all
outstanding store instructions. The pick logic, on its
side, maintains a four bit speculative store counter per
thread, which is incremented each time a store is
picked. When this counter reaches the value eight and
a new valid store is detected, the pick unit transitions
the thread to the WAIT state. This condition is not
easily reachable using random approaches: in fact, it
needs a very specific sequence of memory operations.
On the other side, the proposed approach is able to
excite this condition, mainly due to the generation
process, where the best test programs are combined
and/or manipulated.

E. OpenSPARCTM T1

OpenSPARCTM T1 is a 64 bit open-source
microprocessor core developed by SUN Microsystems
and freely available at [8]. The OpenSPARCTM T1
implements the 64-bit SPARC V9 architecture. If
instantiated in the full version, the processor contains
eight SPARC processor cores, able to support four
threads. Each SPARC core has an instruction cache, a
data cache, and a fully associative instruction and data
translation lookaside buffers (TLB). The eight SPARC
cores are connected through a crossbar to an on-chip
unified level 2 cache (L2-cache).

Each SPARC core has single issue and six stages
pipeline. The six stages are: Fetch, Thread Selection,
Decode, Execute, Memory and Write Back. Additio-
nally, every SPARC has the following units:

• Instruction fetch unit (IFU) includes the fol-
lowing pipeline stages – fetch, thread selec-
tion, and decode. The IFU also includes an
instruction cache complex.

• Execution unit (EXU) includes the execute
stage of the pipeline.

• Load/store unit (LSU) includes memory and
writeback stages, and a data cache complex.

• Trap logic unit (TLU) includes trap logic and
trap program counters.

• Stream processing unit (SPU) is used for
modular arithmetic functions for crypto.

• Memory management unit (MMU).
• Floating-point front-end unit (FFU) inter-

faces to the FPU.
Every single thread, on the other hand, is sup-

ported by a register file (with eight register windows),
with most of the general purpose and special purpose

75Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

Table II. Comparison between the random and the proposed approach.

Strategy Number of Condition Test set duration
programs Coverage

[%] [CC]
Best random 11 91.04 926,400
Proposed 4 96.37 53,125

It can be seen from table II that the proposed
approach is able to achieve a significantly higher con-
dition coverage figure than the purely random one,
while the test length of the set of test programs is sig-
nificantly lower. This difference can partly be attrib-
uted to the ability of the evolutionary engine of guid-
ing the search towards the most promising areas, and
partly to the multi-run mechanism, which allows
boosting up the coverage at every run while reducing
the program length (with respect to the first run).

007-Ravotto-AF 27.08.10 16:06 Page 75

Design Validation of Multithreaded Processors Using Threads Evolution
Ravotto, Sanchez, Sonza-Reorda & Squillero

registers replicated per thread. The four threads share
the instruction, the data caches, and the TLBs. Each
instruction cache is 16 Kbytes with a 32-byte line size.
The data caches are write through, 8 Kbytes, and have
a 16-byte line size.

F. Module and metric selection on the T1 processor

The OpenSPARCTM T1 processor core is des-
cribed at RT-level in Verilog; in this case, the chosen
module is the switch logic unit that belongs to the ins-
truction fetch unit (IFU) and is mainly responsible for
managing the four threads that are executed inside the
processor core by performing the processor thread selec-
tion policy. The thread selection policy is as follows: the
available threads are selected at every clock cycle giving
priority to the least recently executed thread. The
threads become unavailable due to the long latency
operations like loads, branch, MUL, and DIV, as well as
to the pipeline stalls like cache misses, traps, and
resource conflicts. The loads are speculated as cache hits,
and the thread is switched-in with lower priority.

The switch logic unit is described at RT-level in
four different files and counts 1,428 lines, and as in
the first experiment, this is a distinctive module in a
multithreaded processor core, making this module
crucial to the correct behavior of the processor core.
The selected coverage metric regards with toggling
the 7,387 store elements presented in the switch logic
module. Once again, considering the processor
description, this is the most important coverage met-
ric available in the RT-level model, other verification
metrics are negligible or not available for the consid-
ered module.

G. Experimental results

Table III shows the results gathered on the
switch logic unit of the OpenSPARCTM T1 processor
core. Every line of Table III reports the results
obtained by the best programs obtained in every
experiment step (Run #). In particular, the toggle
coverage reported is the accumulated value of the test
set up to the considered run. Additionally, for every
program the code size, and the duration (in terms of
clock cycles) is also reported.

The complete test set lasts 19,615 clock cycles
to be executed, requiring about 96KB. The complete
test set achieves about 86% on the targeted metric.

The complete experiment required about 4 days on
the described workstation, requiring the simulation of
about 4,000 programs. Compared with the pure ran-
dom strategy, the proposed approach improves the
coverage results in about 8%.

5. CONCLUSIONS

In this paper a semi-automatic methodology able
to generate effective test programs for the validation of
complex modules in multithreaded processors has been
presented. The methodology requires a limited and low-
skilled manual intervention, basically to describe the
assembly syntax of the targeted processor core, and can
easily focus on specific critical targets (thus reducing the
required computational effort), while still maintaining
the ability of generating test programs for the whole
processor. Despite the complexity of generating effective
multithreaded test programs, the results gathered on a
couple of real complex designs, the OpenSPARCTM T1,
and OpenSPARCTM T2 processor cores, show the effec-
tiveness and the scalability of the proposed method, in
terms of both achieved coverage figures, and ability to
cover very specific corner cases. The method is also
shown to significantly outperform a random approach in
terms of achieved results when a comparable number of
test programs is evaluated.

REFERENCES

[1] Tasiran S., Keutzer K., “Coverage metrics for functional vali-
dation of hardware designs”, IEEE Design & Test of
Computers, vol.18, no.4, Jul/Aug 2001, pp.36-45.

[2] Pradhan Dhiraj K., Harris Ian G., Practical Design
Verification, Cambridge University Press. June 2009, ISBN:
9780521859721.

[3] Corno F., Sanchez E., Sonza Reorda M., Squillero G.,
“Automatic test program generation: a case study”, IEEE
Design & Test of Computers, vol.21, no.2, Mar-Apr 2004, pp.
102-109.

[4] Thatte S., Abraham J., “Test Generation for
Microprocessors”, IEEE Transactions on Computers, Vol. C-
29, 1980, pp 429-441.

[5] Kranitis N., Paschalis A., Gizopoulos D., Xenoulis G.,
“Software-based self-testing of embedded processors”,
IEEE Transactions on Computers, Vol 54, issue 4, April
2005, pp 461-475.

[6] Ravotto D., Sanchez E., Sonza Reorda M., Squillero G., “On
the Generation of Test Programs for Chip Multi-thread
Computer Architectures”, IEEE Test Conference, 2008. ITC
2008, ISSN: 1089-3539.

[7] Ravotto D., Sanchez E., Sonza Reorda M., Squillero G.,
“Design validation of multithreaded architectures using con-
current threads evolution”, IEEE 22nd Annual Symposium
on Integrated Circuits and System Design, 2009. ISBN: 978-
1-60558-705-9.

[8] OpenSparcTM processor cores: http://www.opensparc.net/

[9] Kurshan R., Computer-Aided Verification of Coordinating
Processes, Princeton University Press, 1994, pp 272.

[10] Goodenough J. B., Gerhart S. L., “Toward a Theory of

76 Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

Table III. Results obtained on the OpenSPARCTM T1 processor.

Run # Toggle Code Test program
Coverage size duration

[%] [KB] [CC]
1 75.12 9.03 3,672
2 80.92 25.61 4,410
3 82.37 27.07 4,067
4 84.25 26.18 3,810
5 85.67 8.89 3,656

007-Ravotto-AF 27.08.10 16:06 Page 76

Design Validation of Multithreaded Processors Using Threads Evolution
Ravotto, Sanchez, Sonza-Reorda & Squillero

Testing: Data Selection Criteria”, Current trends in program-
ming methodology, vol. 2 R. T. Yeh, Ed. Prentice-Hall.
Englewood Cliffs, NJ, 1977, pp. 44 – 79.

[11] Sanchez, E., Sonza Reorda M., Squillero, G., “Test Program
Generation From High-level Microprocessor Descriptions”,
Test and validation of hardware/software systems starting
from system-level descriptions, Edited by M. Sonza Reorda,
M. Violante, Z. Peng, Springer publisher, 2005, 179 p, ISBN:
1-85233-899-7, pp. 83-106.

[12] Lindsay, W., Sanchez, E., Sonza Reorda, M., Squillero, G.,
“Automatic test programs generation driven by internal per-
formance counters”, MTV’04: 5th International Workshop on
Microprocessor Test and Verification, pp. 8-13.

[13] Harman N.A., “Verifying a Simple Pipelined Microprocessor
Using Maude”, Lecture Notes in Computer Science 2267,
Springer-Verlag, 2001, pp. 128-142.

[14] Van Campenhout D., Mudge T.N., Hayes J.P., “High-Level
Test Generation for Design Verification of Pipelined
Microprocessors”, 36th Design Automation Conference
(DAC 99), 1999, ACM Press, pp. 185-188.

[15] Velev, M.N., Bryant R.E., “Formal Verification of Superscalar
Microprocessors with Multicycle Functional Units, Exception,
and Branch Prediction”, 37th Design Automation
Conference (DAC 00), 2000, ACM Press, pp. 112-117.

[16] Jun Y., Pixley, C., Aziz A., Albin K., “A framework for con-
strained functional verification”, International Conference on
Computer Aided Design, 2003. ICCAD-2003., vol., no., pp.
142-145.

[17] Adir A., Almog E., Fournier L., Marcus E., Rimon M., Vinov
M., Ziv A., “Genesys-Pro: innovations in test program gener-
ation for functional processor verification”, IEEE Design &
Test of Computers, vol.21, no.2, Mar-Apr 2004, pp. 84-93.

[18] Behm M., Ludden J., Lichtenstein Y., Rimon M., Vinov M.,
“Industrial experience with test generation languages for
processor verification”, 41st Design Automation Conference
(DAC 04), 2004, ACM Press., pp. 36-40.

[19] Emek R., Jaeger I., Naveh Y., Bergman G., Aloni G., Katz Y.,
Farkash M., Dozoretz I., Goldin A., “X-Gen: a random test-
case generator for systems and SoCs”, Seventh IEEE
International High-Level Design Validation and Test
Workshop, 2002., pp. 145-150.

[20] Guzey O., Wang L.-C., “Coverage-directed test generation
through automatic constraint extraction”, IEEE International
High Level Design Validation and Test Workshop, 2007,
HLVDT 2007, pp.151-158.

[21] Saxena N., Abraham J.A., Saha A., “Causality based gener-
ation of directed test cases”, Asia and South Pacific Design
Automation Conference, 2000, pp. 503-508.

[22] Mishra P., Dutt N., “Functional coverage driven test genera-
tion for validation of pipelined processors”, Design,
Automation and Test in Europe, 2005, Vol. 2, pp. 678-683.

[23] Benjamin M., Geist D., Hartman A., Wolfsthal Y., Mas G.,
Smeets R., “A study in coverage-driven test generation”,
36th Design Automation Conference (DAC 99), 1999,
pp.970-975.

[24] Heon-Mo Koo, Prabhat Mishra, “Functional Test Generation
using Property Decompositions for Validation of Pipelined
Processors”, IEEE Design, Automation and Test in Europe,
2006. DATE ‘06, pp. 1-6.

[25] Apostolakis A., Psarakis M., Gizopoulos D., Paschalis A.,
Parulkar I., “Exploiting Thread-Level Parallelism in
Functional Self-Testing of CMT Processors”, 14th IEEE
European Test Symposium, 2009, pp. 33 – 38.
http://ugp3.sourceforge.net/

77Journal Integrated Circuits and Systems 2010; v.5 / n.1:67-77

007-Ravotto-AF 27.08.10 16:06 Page 77

