
78 Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

Motion Estimation Architecture Using Efficient
Adder-Compressors for HDTV Video Coding

Marcelo Porto1, André Silva2, Sergio Almeida2, Eduardo da Costa2, Sergio Bampi1

1Informatic Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
2Polytechnique Institute, Catholic University of Pelotas, Pelotas, Brazil

email: msporto@inf.ufrgs.br

1. INTRODUCTION

This paper presents our high performance ar-
chitecture for Motion Estimation (ME) using efficient
4-2 and 8-2 adder compressors to calculate the
Quarter Sub-sampled Diamond Search (DS) block
matching algorithm with Dynamic Iteration Control
(QSDS-DIC) [1].

Motion estimation (ME) is the most important
task in the current standards of video compression.
Full Search (FS) is the most used block matching
algorithm for hardware implementation of ME, due
to its regularity, easy parallelization and good per-
formance. However, hardware architecture for FS
algorithm usually requires a large amount of gate
resources to achieve real time, mainly for high resolu-
tion videos. On the other hand, the QSDS-DIC algo-
rithm can significantly reduce the number of SAD
(Sum of Absolute Differences) calculations, when
compared to the FS algorithm, enabling significant
reduction in the hardware resources that are necessary
to achieve real time for high resolution videos. The
proposed architecture is based on the QSDS-DIC

algorithm, using a very large search area, generating
results with quality that are close to the FS results [1].

The main characteristic of the proposed archi-
tecture is the large number of processing units (PUs)
that are used to calculate the SAD metric. Therefore,
the implementation of an efficient SAD calculation
block is necessary in order to improve the perform-
ance of ME architecture. Since the PUs are composed
by a large number of additions to calculate the SAD
metric, we have used efficient adders to reduce the
computational complexity and to increase the per-
formance of the PUs. A combination of 4-2 and 8-2
adder compressors [2], which perform the simultane-
ous addition of 4 and 8 operands respectively are used
in the new solutions for PU architectures.

This paper presents two new PU architectures
using 4-2 adder compressors (the PU-42 architecture)
and 8-2 adder compressors (the PU-82 architecture).
These new PUs (PU-42 and PU-82) were applied to
the QSDS-DIC architecture. The designed ME archi-
tecture was described in VHDL and synthesized to
the TSMC 0.18µm CMOS standard cell with the
Leonardo Spectrum CAD tool. This architecture can

ABSTRACT1

This paper presents real time HDTV (High Definition Television) architecture for Motion Estimation
(ME) using efficient adder compressors. The architecture is based on the Quarter Sub-sampled
Diamond Search algorithm (QSDS) with Dynamic Iteration Control (DIC) algorithm. The main char-
acteristic of the proposed architecture is the large amount of Processing Units (PUs) that are used
to calculate the SAD (Sum of Absolute Difference) metric. The internal structures of the PUs are
composed by a large number of addition operations to calculate the SADs. In this paper, efficient 4-
2 and 8-2 adder compressors are used in the PUs architecture to achieve the performance to work
with HDTV (High Definition Television) videos in real time at 30 frames per second. These adder
compressors enable the simultaneous addition of 4 and 8 operands respectively. The PUs, using
adder compressors, were applied to the ME architecture. The implemented architecture was
described in VHDL and synthesized to FPGA and, with Leonardo Spectrum tool, to the TSMC
0.18µm CMOS standard cell technology. Synthesis results indicate that the new QSDS-DIC archi-
tecture reach the best performance result and enable gains of 12% in terms of processing rate. The
architecture can reach real time for full HDTV (1920x1080 pixels) in the worst case processing 65
frames per second, and it can process 269 HDTV frames per second in the average case.

Index Terms: Motion estimation, fast algorithm, HDTV video coding, adder compressors.

008-Marcelo-AF 27.08.10 16:07 Page 78

Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video Coding
Porto, Silva, Almeida, Costa & Bampi

reach real-time for HDTV 1080p videos with a low
hardware cost.

The results show that the use of PU-42 and
PU-82 can significantly improve the performance of
the QSDS-DIC architecture. Moreover, the improve-
ment in performance of the PUs enables gains of 12%
in the QSDS-DIC architecture in terms of processing
rate, when compared to the original architecture.

The rest of the paper is organized as follows:
Section II presents a short review of some related
works. Section III presents the main characteristics of
the 4-2 and 8-2 adder compressors. Section IV presents
the QSDS-DIC algorithm and a software evaluation
with quality and computational cost results. In Section
V the QSDS-DIC architecture is presented, including
the original PU and the developed PU-42 and PU-82
architectures. Section VI discusses the synthesis results.
Finally, Section VII presents the main conclusions of
this work and some ideas for future work.

2. RELATED WORKS

Hardware implementations for motion estima-
tion are widely used to speed up the generation of the
motion vectors. The use of hardware solutions is still
more important when real time processing is consid-
ered, mainly for high definition video coding. There
are a large amount of published works with hardware
architectures for the motion estimation process,
including both FPGA and ASIC solutions. Most of
the solutions are based on the traditional Full Search
(FS) algorithm.

The FS algorithm was chosen by Moham-
madzadeh [3], Gaedke [4], He [5] and Kao [6] to
develop their ME architectures. However, only
Mohammadzadeh [3] synthesizes his architecture to
FPGA. These solutions, based on the use of FS algo-
rithm, do not present much innovation. In fact, as the
FS algorithm is very regular, with no data depen-
dences, thus there is no much innovation to be
explored when this algorithm is implemented in hard-
ware. In general, when solutions aim high perform-
ance, several levels of parallelism have to be consid-
ered. It implies on a very high cost for area resources.

The architecture presented by Kao [6] is based
on the use of a threshold value to speed-up the match-
ing process. When the difference between the candidate
block and the current block is lower than this threshold,
then the search stops. The solution proposed by Larkin
in [7] also uses the FS algorithm. However, he imple-
ments a 4:1 pixel sub-sampling, combined with an early
termination approach by using threshold.

The hardware solutions for fast ME algorithms
are not very common. It can be explained mainly by
the characteristics required by the fast algorithms such
as, data dependences, unlimited number of iteration

to find the best match, and hard parallelization. One
fast algorithm named Dynamically Variable Step
Search (DVSS) was used by Tasdizen [8], where his
architecture was implemented in a Spartan-3 FPGA,
and used 256 processing units (PU). With this large
number of PUs, his architecture is able to can process
real time HDTV with an operational frequency of
130MHz. This solution also uses a threshold as
parameter to stop the search, and its performance, and
also the quality results, are directly dependent to this
threshold value.

As some of the published work, our proposed
solution aims the possibility of reducing the number
of clock cycles, to achieve high performance by using
a fast algorithm. However, neither of the published
work has considered the techniques we have proposed
in this work. Our approach is based on two main
ideas: i) reducing dynamically the number of iterations
for the calculation of the motion vector, and ii) using
efficient hierarchical adder compressors to reduce the
latency of the PU.

3. ADDER COMPRESSOR CIRCUITS

One of the main goals of this work is the effi-
cient calculation of the large amount of the additions
generated by the PUs that are present in the ME. For
this task, adder compressors were used. These com-
pressors enable the simultaneous addition of more
than two operands at a time. In this work, namely 4-
2 and 8-2 adder compressors are used for the efficient
addition calculations of the PUs.

A. Basic Structure

A structure to add four bit inputs simultane-
ously was presented by Weinberger in [2]. This struc-
ture was named 4-2 Carry Save module and contains
a combination of full adder cells in truncated connec-
tion in which a fast compression is possible. The 4-2
compressor has five inputs and three outputs, where
the five inputs and the output Sum have the same
weight. On the other hand, the outputs Cout and
Carry have a greater weight. The Sum, Cout and
Carry terms are calculated according to equations 1, 2
and 3 [2]. One important point to be emphasized in
the equations is the independence of the output carry
Cout on the input carry (Cin) in equation 2. This
aspect enables higher performance addition imple-
mentation.

(1)

(2)

(3)Carry A B C D Cin D Cin= ⊕ ⊕ ⋅ ⋅ ⋅ ⋅[] () ()

Cout A B A C B C= ⋅ ⋅ ⋅ ⋅ ⋅() () ()

Sum A B C D Cin= ⊕ ⊕ ⊕ ⊕

79Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

008-Marcelo-AF 27.08.10 16:07 Page 79

Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video Coding
Porto, Silva, Almeida, Costa & Bampi

80 Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

The improvement in the structure of a 4-2
compressor, using multiplexer is shown in Figure 1.
This structure proposed by Oklobdzija [9] has a more
reduced critical path, where the maximum delay is
given by three exclusive-OR gates. This critical path is
shorter than the previous structure given by
Weinberger [2] which presents four exclusive-OR
gates in the critical path (equations 2, 3 and 4).

The Diamond Search (DS) algorithm defines
two diamond patterns, the Large Diamond Search
Pattern (LDSP) and the Small Diamond Search Pattern
(SDSP) [10]. The LDSP consists of nine comparisons
around the center of the search area. The SDSP is used
in the end of the search, when four candidate blocks are
evaluated around the center of the LDSP, in order to
refine the final result. Figure 3(a) shows the LDSP
(white circles) and the SDSP (gray circles).

The search ends when the lower SAD is found
at the center of the LDSP. The SDSP is then applied
and the search is finished. When the best match is
found in a vertex, five more blocks are evaluated to
form a new LDSP, as shown in Figure 3(b). If the best
match was obtained in an edge, three more blocks are
evaluated, as can be seen in Figure 3(c).

The 4:1 Pixel Sub-sampling (PS) technique was
investigated in our previous work with very promising
results. The Pixel sub-sampling is applied to each
evaluated candidate block. Thus, only half of pixels of
each line of the original block will be considered. The
number of lines is also sub-sampled by half.

The pixel sub-sample by half in terms of the
number of lines, and in terms of the number of ele-
ments in each line, reduces the number of pixels in a
candidate block by four.

Figure 4(a) shows a no sub-sampled 8x8 block,
and Figure 4(b) shows a 4:1 pixel sub-sampled 8x8
block. Only the black pixels will be calculated, while
the white ones are not taken into account.

Considering a candidate block with 16x16 sam-
ples, it becomes a sub-sampled block with 8x8 sam-
ples. Then, by using PS it is possible to improve by
four the throughput in the block matching search.

Figure 1. 4-2 Compressor structure proposed by [9]

The final sum result of the 4-2 compressor is
given by a combination of Sum, Cout and Carry terms,
where the terms Cout and Carry have greater weight
than the Sum term, as can be seen in equation (4).

(4)

B. Hierarchical Structure

From the implementation of the 4-2 compres-
sor it was possible to extend up the number of simul-
taneous additions by implementing an 8-2 compres-
sor. For the 8-2 compressor architecture, a cascade of
4-2 compressors is used, where eight numbers can be
added simultaneously. The architecture is composed
by thirteen inputs (eight primary inputs and five carry
inputs) and seven outputs (one Sum, one Carry and
five Cout terms). The 8-2 compressor architecture can
be seen in Figure 2. The final sum in the 8-2 com-
pressor is obtained as in equation 4.

4. QSDS-DIC MOTION ESTIMATION ALGORITHM

This paper focuses in a high throughput solu-
tion for motion estimation in digital video coding,
using the QSDS-DIC algorithm and adder compres-
sors. QSDS-DIC is based on three main principles: (1)
Diamond Search algorithm; (2) 4:1 Pixel Sub-sam-
pling technique and (3) dynamic iteration control [1].
These main principles will be detailed on the next
paragraphs.

S Sum Cout Carry= + +2()

Figure 2. 8-2 adder compressor structure

(a) (b) (c)
Figure 3. (a) LDSP and SDSP, (b) Search for a vertex, and (c)
Search for an edge

008-Marcelo-AF 27.08.10 16:07 Page 80

This aspect enables reductions in terms of hardware at
the cost of a small loss in terms of quality.

Finally, the Dynamic Iteration Control (DIC)
was designed focusing on the hardware design of ME.
This feature allows a good tradeoff between hardware
resources consumption, throughput, synchronization
and quality. One important characteristic of the fast
ME algorithms is the unrestricted number of itera-
tions. Usually, the fast algorithms can repeat the used
standard for search (diamond in this work) until a
given condition for finishing the search is found. Ho-
wever, when a hardware implementation is consid-
ered, a restriction on the number of used iterations
must be implemented. To solve this problem DIC was
developed to dynamically control the iterations usage.

Through the software analysis of 10 video sam-
ples, it was possible to conclude that the DS algorithm
uses an average number of 3.2 iterations while, in the
worst case, DS uses 89 iterations. This analysis con-
sidered a search area with 208x208 samples and
blocks with 16x16 samples. These results also indicat-
ed that DS rarely uses more than 14 iterations. Then,
this characteristic was also explored in this paper
through the design of DIC control hardware.

The restriction in the number of iterations is
important to make easier the synchronization of this
module with other video coder modules. This restric-
tion is also important to allow for the best relationship
between high throughput and low hardware cost. A
static restriction could be implemented. However, it
causes degradation in the results quality. Then, we
proposed a dynamic (DIC) restriction. DIC allows the
algorithm to use a variable number of iterations,
which depends on the actual algorithm performance.

In the DIC implementation, a variable stores
the number of iterations used for the generation of
the 16 last motion vectors. Each motion vector has a
limited number of 20 iterations to use (much more
than the average of 3.2). When a motion vector uses
less iterations than the maximum available for it, the
saved iterations are accumulated and this extra slack is
available to be used, if needed for better matching, in
the estimation of the next motion vector. The great
part of the motion vector will be generated with less
iteration of the maximum available (20), even the
average is equal to 3.2 iterations. Thus, when some

vector needs to use 40 iterations to achieve a far dis-
tance, and find a best matching, it will be possible.
Even using a variable number of cycles to calculate
each motion vector, the performance can be defined
by the static number of cycles available for the set of
16 motion vectors.

The use of DIC also becomes the search area
variable. The size of the search area will depend on the
choices of the algorithm. The search area will increase
according to the use of iteration by the algorithm to
find the best matches.

A. Algorithm Evaluation

This section presents the results of a software
evaluation between Full Search (FS), FS with 4:1 Pixel
Sub-sampling (PS), Diamond Search (DS) [10],
QSDS, DS-DIC (with no sub-sampling) and QSDS-
DIC [1]. FS block matching algorithm is the only one
that presents the optimal results in terms of matching.
All the others are faster algorithms which use different
types of heuristics to reduce the computational com-
plexity of the motion estimation process. The main
results of the software analysis are shown in Table I.

The search algorithms were developed in C
language and the results for quality and computation-
al cost were generated. The search area used was
64x64 pixels (except for DIC based algorithms which
has a dynamic search area) with block size of 16x16
pixels. The QSDS-DIC algorithm restricted to 320
the number of iterations used to generate 16 motion
vectors. It means that, in the worse case, the QSDS-
DIC algorithm can reach a very high search area (and
rarely necessary) of 1300x1300 samples.

The DS-DIC version does not use pixel sub-
sampling, and it was evaluated with an iteration restric-
tion of 160. This hard restriction leads to a maximum
search area of 660x660 pixels. The algorithms were
applied to the first 100 frames of 10 well know SDTV
video sequences with a resolution of 720x480 pixels.

The quality results were evaluated through the
averages of PSNR and percentage of residual reduc-
tion (PRR), shown in Table I.

The PRR is measured comparing the results for
generated residual by the ME process with the residual
results generated by the direct subtraction between the
reference and the current frames (differential coding).
Table I also presents the average number of SAD oper-

Figure 4. (a) Original 8x8 block, (b) 4:1 Pixel Sub-sampled 8x8
block

Table I. Results of the software analysis.

Search PRR (%) PSNR (dB) # of SADs (x109)
Algorithm

FS 54.66 28.483 82.978
4:1 FS 50.20 27.244 20.745

DS 48.63 27.233 0.852
DS-DIC 48,27 27.207 0.850
QSDS 43.33 26.004 0.207

QSDS-DIC 43.64 26.030 0.209

Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video Coding
Porto, Silva, Almeida, Costa & Bampi

81Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

008-Marcelo-AF 27.08.10 16:07 Page 81

Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video Coding
Porto, Silva, Almeida, Costa & Bampi

82 Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

ations used by each algorithm, when processing the
same video sequences in the benchmark. Both FS and
4:1 sub-sampled FS require two orders of magnitude
more SAD calculations than the DS variations.

By using 4:1 PS in the FS algorithm it is possi-
ble to reduce four times the number of SAD opera-
tions. The quality losses generated with the use of 4:1
PS are small. These losses are only of 4.46% in the
error reduction and only of 1.239dB in the PSNR
when comparing to the FS without sub-sampling. The
results for DS and DS-DIC algorithms are very simi-
lar to 4:1 FS in terms of quality. However, the gain in
terms of reduction of SAD operations is about 24
times higher than the FS with 4:1 PS solution.

QSDS with DIC, as expected, is able to improve
the results of QSDS, with a small impact in terms of the
number of SAD calculations. QSDS-DIC presents an
error reduction 3.1% higher than the QSDS and 5% less
than DS. The PSNR of QSDS-DIC is 0.026dB higher
than the QSDS and 1.203dB lower than DS. The num-
ber of SAD calculation is a little bit higher in QSDS-
DIC than in QSDS, since QSDS-DIC uses only 1%
more operations. This small increase in SAD calculations
is responsible for increasing the PSNR. When compared
to the FS algorithm, QSDS-DIC presents a loss in error
reduction of 11% and a loss in PSNR of 2.453dB. In the
other hand, QSDS-DIC is able to reduce the number of
SAD calculations by 397 times.

FS algorithm with PS is widely used for motion
estimation hardware architectures due to the good
quality results and the regularity of the algorithm.
However, the use of hardware resources for real time
applications in high resolution videos is very intensive.

There are many restrictions for the use of fast
motion estimation algorithms for hardware design. In
general, fast algorithms are based on an application of a
search standard which can be repeated while a condition
is not satisfied. For hardware implementation, a restric-
tion for these repetitions must be implemented. It is
impossible to determine the number of necessary clock
cycles to generate a motion vector without this restric-
tion. Thus, it is also impossible to calculate the per-
formance of the architecture.

The QSDS-DIC algorithm is a fast algorithm that
dynamically performs the restriction in the standard rep-
etition. This algorithm was implemented in hardware,
and it was chosen to be designed in this paper to allow a
hardware design with high performance, and low hard-
ware resources utilization. These characteristics are
achieved while keeping the quality of the generated
motion vectors.

5. QSDS-DIC ARCHITECTURE

The QSDS-DIC architecture explores the ma-
ximum parallelism available by the DS search engine.

The designed architecture for the QSDS-DIC algo-
rithm uses SAD as a distortion criterion. The architec-
tural block diagram is shown in Figure 5. The archi-
tecture has nine processing unities (PU), to calculate
the SAD between the reference and candidate block.
A set of internal memories are used to store the cur-
rent and candidates blocks. A special memory and a
set of multiplexers are used to speed up the SDSP cal-
culation.

The nine candidate blocks of the LDSP are cal-
culated in parallel and the results are sent to the com-
parator. Each candidate block receives an index, to
identify the position of this block in the LDSP. The
comparator finds the lowest SAD and sends the index
of the chosen candidate block to the control unit. The
control unit analyses the block index and decides the
next step of the algorithm. If the best result was found
at the center of the LDSP, the control unit starts the
final refinement with the SDSP. In the SDSP calcula-
tion, four more candidate blocks are evaluated. The
lowest SAD is identified and the control unit gener-
ates the corresponding motion vector for this block.
When the best result was not found at the center, a
new iteration is applied.

A. Memory Organization

The internal memory is organized in 15 differ-
ent local memories, as presented in Figure 6. The local
memory (LM) stores the region with the nine candi-
date blocks of the first LDSP and all the possible
blocks for the next step. Thus, when the control unit

Figure 5. QSDS-DIC block diagram architecture

008-Marcelo-AF 27.08.10 16:07 Page 82

decides which blocks must be evaluated in the next
step, the LM already has this data. LM is composed by
16 words of 128 bits wide. Another 13 small memo-
ries are used to store the candidates block (CBM) and
one for the current block (CB). These 14 memories
are composed by 8 words with 64 bits (8 samples of 8
bits) and they store one sub-sampled block with 8x8
samples.

There are many common data between the
candidate blocks. For example, the second line of the
LM provides data for the second line of the candidate
block 0, and also for the candidate block 1 and 2 first
lines. The LM second line also provides data for the
first line of the candidate block 0 of the SDSP.

LM is read line by line and the data is stored in
the CBMs. Nine CBMs are used to store the candi-
date blocks from the LDSP. Four CBMs are used to
store the blocks of the SDSP. These blocks are stored
at the same time as the LDSP blocks, and they are
ready to be used by the PUs, if the control decides to
start the SDSP. This solution speeds up the architec-
ture and reduces the memory access latency. When
the SDSP mode is active, the control unit selects the
multiplex in Figure 5 and the PUs receive the data
from these memories with no memory latency.

Each line from the LM has 128 bits. However,
a partition unit (Partition block in Figure 6) cuts the
line to 64 bits. This unit selects the correct part of
the 128 bits which corresponds to the candidate
block. When the first line of the LM is read, the
Partition block selects the correct part of the word
which corresponds to the line 0 of the candidate
block 0, to be stored in the CBM0. When the second
line is read, this module selects the correct part of
the second line of the candidate block 0, to be stored
in the line 1 of the CBM0, and the correct part for
the first line of the candidate block 1, to be stored in
the CBM1. This process finishes when all LM is read
and all CBMs are full.

A local control was developed to control the
memory access. The control unit in Figure 5 is not
responsible for controlling the memories read/write
process. When the datapath finishes the SAD calcula-
tion, the control unit informs the memory if the
search should continue or if the SDSP should be
applied. If the search continues, by an edge or a ver-
tex, the CBMs are stored with the new candidate
blocks and the LM memory is reloaded. In this case,
there are 10 cycles of latency to write the first line in
the nine CBMs. If SDSP is applied, the four candidate
blocks are already stored and the datapath starts with
no memory latency. Even using 15 different memo-
ries, the total memory consumption is small. The
search area is loaded according to the algorithms
necessity, such that no irrelevant data is stored. A total
of 9.2 Kbits are used for all motion estimator internal
memories.

B. Dynamic Iteration Control

As mentioned before, it is clear that a restric-
tion in the number of iterations, must be implement-
ed to ensure the desired throughput. Without an iter-
ation restriction the architecture could use, in the
worst case, a very large number of iterations, and con-
sequently, a large number of clock cycles to generate
the motion vector. As the hardware must be able to
process the ME also in the worst case, the overall
architecture must be overestimated to allow the
desired throughput in the worst case, while in most of
the time the hardware resources will be underutilized.
It is also impossible to determine the architecture
throughput without any restriction and it can also be
difficult to synchronize it with the other blocks of the
video coder.

The architecture used to implement DIC is
shown in Figure 7. The number of iterations used is
sent to a shift register (SR) with 16 positions. A set of
add/accumulator (ACC) generates the total number
of iterations used in the last 16 motion vectors. The
DIC was developed allowing a maximum of 20 itera-
tion per motion vector, thus the used iterations for the
last 16 vectors are subtracted of 320 (maximum value
for a set of 16 motion vectors), and the result is the
number of available iterations for the next motion vec-
tor generation. This results in a dynamic search area.
Considering the DIC with 20 iterations per motion
vector, the QSDS architecture can use a maximum
search area of 1300x1300 pixels.

C. Processing Unit

The ME architecture uses nine Processing Unit
(PU), where each one of the PUs calculates the SAD
for a candidate block. Each PU can process eight sam-
ples in parallel and this means that one line of the

Figure 6. Memory organization

Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video Coding
Porto, Silva, Almeida, Costa & Bampi

83Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

008-Marcelo-AF 27.08.10 16:07 Page 83

Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video Coding
Porto, Silva, Almeida, Costa & Bampi

84 Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

16x16 sub-sampled blocks is processed in parallel.
Thus, eight accumulations must be used to generate
the final SAD result of each block, one accumulation
per line. The Processing Unit (PU) was designed as an
adder tree, in a four-stage pipeline. Figure 8 shows the
PU architecture.

The PUs receive data from the memories of the
candidate blocks (CBM) and the actual block (CB).
Each PU receives a word from the CBM and one
word from the CB and calculates the difference
between the eight samples that are present in each one
of these words. First, the eight samples of the actual
and the candidate blocks are subtracted. The absolute
values from the difference between the samples are
added and the final result of the accumulation of the
differences, for all samples of the line, is stored in the
output register.

The pipelined PU can calculate one line of can-
didate block per cycle, after the latency of four clock
cycles. A set of adder/accumulator is used in the out-
puts of the PUs in order to store the intermediate
results from each one of the candidate blocks.

In general, sixteen accumulations to generate
the final results of the SAD for a candidate block (one
accumulation for each line of the block) are needed.

In this work we have proposed and tested the
implementation of two versions of PU by using 4-2 and
8-2 adder compressors (PU-42 and PU-82 respective-
ly). These adder compressors are used to perform effi-
ciently the large number of additions in the PU.

As in the original architecture presented previ-
ously, our solution processes eight samples in parallel.
The main difference between these PUs architectures
is the type of adders that are used. The proposed
architecture uses efficient adder compressors to per-
form the additions in the PU. Figure 9 shows the PU-
42 architecture.

Two blocks of 4-2 adder compressors are used
to perform the addition of eight operands that are
available at the output of the first column of registers.
The values added by the 4-2 adder compressors re-
present the module of the subtractions that are per-
formed at each pair of the input operands. The final
PU result is calculated by the addition of the results
produced by the output of each block of the 4-2 adder
compressors. Since four simultaneous additions are
performed by the 4-2 adder compressor, it is possible
the elimination of one column of adders, as can be
compared in Figures 8 and 9. Thus, the proposed
architectural solution saves one clock cycle when com-
pared to the original architecture.

In order to improve the performance of the
PU, we have proposed the use of 8-2 adder compres-
sor (PU-82), as can be observed in Figure 10. In this
architecture, eight samples can be added simultane-
ously by the 8-2 adder compressor enabling the elim-
ination of two columns of adders. Thus, the PU with

Figure 7. Block diagram of DIC

Figure 8. PU architecture

Figure 9. PU-42 Architecture

008-Marcelo-AF 27.08.10 16:07 Page 84

8-2 adder compressor can save two clock cycles, when
compared with the original solution. As can be
observed in Figure 10, after the first row of registers,
only one 8-2 adder compressor is necessary to calcu-
late the final result.

D. Performance evaluation

The original QSDS-DIC architecture and the
two proposed versions (using PU-42 and PU-82) use
26 clock cycles to fill all the memories and to start the
SAD calculation.

The original PU has a latency of four cycles
while the PU-42 and PU-82 have a latency of three
and two cycles, respectively. All versions need seven
more cycles to calculate the SAD of one block.

The comparator uses five cycles to choose the
lowest SAD. Thus, 42 clock cycles are necessary to
process the first LDSP in the original QSDS-DIC
architecture. The SDSP needs only 20 cycles to calcu-
late the SAD for the four candidate blocks of the
SDSP. As a result, in the best case, the original archi-
tecture can generate a motion vector in 62 cycles.

The developed architecture, with PU-42, uses
41 clock cycles to process the first LDSP, and 19 clock
cycles to calculate the SDSP. Thus, in the best case,
the QSDS-DIC architecture with PU-42 can generate
a motion vector in 60 clock cycles. The second archi-
tecture, using PU-82, uses only 40 clock cycles to cal-
culate the first LDSP and 18 cycles to process the

SDSP. Then, in the best case, the QSDS-DIC archi-
tecture with PU-82 uses 58 clock cycle to generate a
motion vector.

The average case was obtained through soft-
ware analysis [1]. The QSDS-DIC algorithm uses an
average of 3 iterations to find the best match. 10 clock
cycles are needed for the memory latency. The origi-
nal PU uses 11 additional clock cycles, while the PU-
42 uses 10, and the PU-82 uses 9. Thus, each itera-
tion in the original ME architecture uses 26 clock
cycles, while the solutions with PU-42 and PU-82,
use 25 and 24 cycles respectively.

The worst case is defined by the DIC mecha-
nism. In this architecture, the DIC allows the use of
20 clock cycles for each motion vector generation.
Thus, considering the worst case, the original archi-
tecture uses a maximum of 582 cycles to generate a
motion vector. The QSDS-DIC architecture with PU-
42 and PU-82 uses 560 and 538 cycles respectively.

6. RESULTS AND COMPARISONS

This section presents synthesis results from the
original QSDS-DIC architecture and the new one
using adder compressors. The proposed architecture
was all described and validated in hardware descrip-
tion language - VHDL. Synthesis results for both
FPGA and standard-cell are presented.

A. Synthesis Results from the Original Archi-
tecture

The proposed architecture was described in
VHDL. ISE 8.1i tool was used to synthesize the archi-
tecture to the Virtex-4 XC4VLX15 device and the
ModelSim 6.1 tool was used to simulate and to vali-
date the architecture design. Table II presents the syn-
thesis results.

The device hardware utilization is small, since
only 3.5k look-up-tables (FPGA LUTs) are used. The
synthesis results show the high frequency achieved by
the QSDS-DIC architecture.

The performance results presented in Table II
take into account HDTV (1920x1080 pixels) videos.
Thus, the QSDS-DIC architecture can process 45 fps
for HDTV 1080p video in the worst case. Conside-
ring the DIC with 20 iterations per vector, the archi-

Figure 10. PU-82 Architecture

Table II. QSDS-DIC Architecture Synthesis Results.

Parameter QSDS Results

BRAMs 32
Slices 2007

Slice FF 2086
LUTs 3610

Frequency (MHz) 213.3
HDTV 1080p fps (worst case) 45

HDTV 1080p fps (average case) 188

Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video Coding
Porto, Silva, Almeida, Costa & Bampi

85Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

008-Marcelo-AF 27.08.10 16:07 Page 85

Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video Coding
Porto, Silva, Almeida, Costa & Bampi

86 Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

tecture can use, in the worst case, 9312 clock cycles to
generate 16 motion vectors, which represents an aver-
age of 582 cycles per motion vector.

The average case was obtained through the
software implementation of the algorithm. The algo-
rithm uses an average of three iterations in the second
step of iteration. Then, the QSDS-DIC architecture
needs 140 clock cycles to generate a motion vector in
the average case. This implies on a processing rate of
188 HDTV 1080p frames per second in this case. The
synthesis results presented in Table II show that the
QSDS-DIC architecture has a throughput which is
larger than that is necessary to process HDTV 1080p
frames in real time.

Table III shows the minimum frequency oper-
ation for the QSDS-DIC architecture in several video
standards, for the worst and average cases.

The minimum frequency operation for the
QSDS-DIC architecture is very low for low resolution
videos. Considering the worst case, the QSDS-DIC
architecture needs only 1.7 MHz to process QCIF
videos in real time. For the average case, the minimum
frequency operation is still less, only 0.4 MHz. Even
for the standard definition SDTV 480p the minimum
frequency is low, about 23.5 MHz in the worst case.
For HDTV 1080p frames, the minimum frequency is
about 141.4 MHz in the worst case and 34.0 MHz
for the average case.

The minimum frequency operation results
show that, depending on the video resolution, the
QSDS-DIC architecture can be synthesized to operate
on a lower speed or it can be synthesized to an older
FPGA technology. It is also interesting for low power
application, as mobile phone for example, that usually
process data for low resolution videos.

Table IV shows FPGA results, where our
QSDS-DIC architecture is compared to the FS archi-
tecture presented by Mohammadzadeh in [3], FTS
(Flexible Triangle Search) architecture presented by
Rehan in [11], FS+PS4:1 and early termination archi-
tecture presented by Larkin in [7], and the DVSS
(Dynamically Variable Step Search) presented by Tas-
dizen in [8]. The solutions presented by Moham-
madzadeh in [3] and Rehan in [11] have a constant
throughput. On the other hand, as our proposed
QSDS-DIC architecture, the architecture presented

by Larkin in [7] has a variable throughput (represent-
ed by average throughput in Table IV) due to the
early termination. The result presented by Tasdizen
[8] has considered a threshold value equal to 256 for
block matching. This threshold can be changeable,
and thus the performance result can be varied. While
the search area used by Larkin [7] is 32x32 samples,
the Tasdizen architecture [8] uses a search area of
48x24 samples. The architectures presented by
Mohammadzadeh in [3] and Rehan in [11] do not
present this information. The processing rate of
HDTV frames (1920x1080) is also presented in Table
IV. The number of CLBs used by the architecture pre-
sented in [7] by Larkin was not mentioned in that
paper.

As can be observed in Table IV, QSDS-DIC
architecture is the fastest one among the presented
designs. Due to the efficiency of the QSDS-DIC algo-
rithm, the designed architecture uses less hardware
resources than the other solutions, reaching the high-
est throughput among them.

B. Synthesis Results with Adder Compressors

Table V presents the synthesis results for the
original QSDS-DIC architecture and the developed
solutions with PU-42 and PU-82. Leonardo
Spectrum tool was used to synthesize the architectures
to standard-cell TSMC 0.18µm CMOS technology.

The latency, hardware area (expressed as the
number of gates), frequency operation and the num-
ber of frames per second (fps) for HDTV, are present-
ed for the original architecture [1] and the two new
developed versions with adder-compressors, where
both the worst case and the average case are consid-
ered. These new architectures are: QSDS-DIC with
PU-42 (using 4-2 adder compressor) and QSDS-DIC
with PU-82 (using 8-2 adder compressor). The aver-
age case for the calculation of the fps was obtained
through the software implementation of the algo-
rithm [1]. The algorithm uses an average of three iter-
ations in the second step of iterations. The worst case
is defined by the DIC, and all versions allow 20 itera-
tions for each motion vector generation.

As can be observed in Table V, the QSDS-DIC
with PU-42 and PU-82 versions are more efficient
than the original one. Particularly, the QSDS-DIC
with PU-42 is the one with the highest frequency

Table III. Minimum frequency operation for real time in several
video standards.

Minimum Frequency Opera-tion
Standard Worst Case Average Case

(MHz) (MHz)

QCIF (176 x 144) 1.7 0.4
CIF (352 x 268) 6.9 1.6
VGA (640 x 480) 2.9 5.0
SDTV (720 x 480) 23.5 5.6
HDTV (1280x720) 83.8 20.1
HDTV (1920 x 1080) 141.4 34.0

Table IV. FPGA comparative results.

Solution FPGA CLBs Frequency HDTV
(MHz) (fps)

Mohammadzadeh [3] Spartan 2 939 109.8 1.66
Larkin [7] Virtex 2 - 120.0 *24

Tasdizen [8] Spartan 3 2282 130.0 34.3
Rehan [11] Spartan 3 6142 74.0 45
QSDS-DIC Virtex 4 492 213.3 *188

* Average throughput

008-Marcelo-AF 27.08.10 16:07 Page 86

operation among the architectures considered herein,
because the 4-2 adder compressor used in PU-42 has
a shorter and faster critical path than that of the 8-2
adder compressor used in PU-82. As the PU-42 archi-
tecture has a latency of 60 clock cycles, thus it can
process 63 frames per second for HDTV 1080p video
in the worst case. On the other hand, in the average
case, where generally three iterations to calculate a
motion vector are needed, this architecture can
process 240 frames per second.

The QSDS-DIC architecture with PU-82 has a
lower frequency operation than the architecture with
PU-42. However, as the QSDS-DIC architecture with
PU-82 has two less clock cycle (58 against 60 of
QSDS-DIC with PU-42), and the difference in fre-
quency operation between the two versions is not sig-
nificant, then the QSDS-DIC with PU-82 can reach
the best results in terms of HDTV 1080p frames
processed per second (65 frames per second in the
worst case and 269 frames per second in average case).

Another important point to be observed in
Table V is the higher number of gates presented by
the architecture with PU-42. In fact, we have
observed that the use of two separate blocks of 4-2
adder compressors contributes to the higher number
of gates presented in the QSDS-DIC architecture with
PU-42. On the other hand, even using more complex
8-2 adder compressor, the architecture with PU-82
uses one less column of adders and one less column of
registers, all contributing to a slightly smaller number
of gates required by the PU-82 architecture.

The developed architecture for the QSDS-DIC
algorithm was compared with other published designs
for ME. Table VI shows the comparisons of the origi-
nal QSDS-DIC architecture, the architecture with PU-
42 and PU-82 versions, and the designs presented by
Li in [12], Gaedke in [4], He in [5] and Kao in [6].

The architectures presented by Gaedke in [4],
He in [5] and Kao in [6] are based on the FS algo-
rithm and they were designed targeting HDTV appli-
cations. QSDS-DIC (original [1] and with PU-42 and
PU-82) architecture presents significant reduction in
terms of area, when compared to the results present-
ed by Gaedke [4] and He [5], where more than 30
times less gates are used, and when compared to the
architecture presented by Kao [6], where more than

10 times less gates are used. However, the QSDS-DIC
architecture presents slightly more gates than the
architecture presented by Li in [12]. This occurs
because that architecture uses the PVMFAST algo-
rithm for a small search range of 32x32 samples, and
does not achieve the required performance for real
time HDTV coding.

As the QSDS-DIC architecture is based on fast
algorithm and considers very wide search areas, then
this architecture is more efficient than those present-
ed in [4], [5], [6] and [12]. The QSDS-DIC presents
the highest throughput, even if its frequency ope-
ration is not the highest among all the standard-cells
solutions. QSDS-DIC also presented the best tradeoff
between hardware consumption and throughput
among all works herein compared. Particularly, the
QSDS-DIC with PU-82 presents the best results for
processing rate, with a very small increase in terms of
gates utilization, when compared to the original archi-
tecture [1].

7. CONCLUSIONS

This paper presented a real time HDTV motion
estimation hardware architecture based on the
Quarter Sub-sampled Diamond Search with Dynamic
Iteration Control (QSDS-DIC) algorithm. This paper
also presented two new architectural alternatives for
the processing units (PU) used in the motion estima-
tion architecture to the SAD calculation.

The designed ME architecture is able to run at
213.3 MHz in a Xilinx Virtex 4 FPGA and only 3610
LUTs were used to implement it. The QSDS-DIC
architecture can operate videos in real time for HDTV
1080p (1920x1080 pixels) resolution. In the worst case,
the QSDS-DIC architecture is able to process 45
HDTV frames per second. In the average case, the archi-
tecture is able to process 188 HDTV frames per second.

The QSDS-DIC architecture reaches the best
results for maximum throughput and the lowest
resources utilization among all based on FPGA and
standard-cell solutions of the literature presented in
this work. Another important feature is that QSDS-
DIC architecture presents the best tradeoff between

Table V. Synthesis results for QSDS-DIC architecture.

Parameter Original
Architecture QSDS-DIC QSDS-DIC

[1] with PU-42 with PU-82

UP Latency 11 10 9
Area (gates) 28.087 29.702 28.858

Frequency (MHz) 272.6 287.3 283.0
HDTV 1080p fps 58 63 65

(worst case)
HDTV 1080p fps 240 263 269
(average case)

Table VI. Comparison of Standard-cells results.

Solution Process Area Freq. HDTV
(µm) (k gates) (Mhz) (fps)

Gaedke [4] 0.09 1200 334 25
He [5] 0.25 1020 100 46
Kao [6] 0.18 321 154 30
Li [12] 0.18 17.5 200 23

QSDS-DIC Original [1]
(worst case) 0.18 28.0 272 57

QSDS-DIC PU-42 0.18 29.7 287 63
(worst case)

QSDS-DIC PU-82 0.18 28.8 283 65
(worst case)

Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video Coding
Porto, Silva, Almeida, Costa & Bampi

87Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

008-Marcelo-AF 27.08.10 16:07 Page 87

Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video Coding
Porto, Silva, Almeida, Costa & Bampi

88 Journal Integrated Circuits and Systems 2010; v.5 / n.1:78-88

throughput and hardware consumption among these
presented solutions of literature.

The processing unit of the QSDS-DIC archi-
tecture was also developed using efficient 4-2 (PU-
42) and 8-2 (PU-82) adder compressors, in order to
improve the efficiency of the addition calculation in it.

The QSDS-DIC architecture with PU-42 is
able to run at 287.3 MHz when synthesized to TSMC
0.18µm CMOS standard cell and 29.702 equivalent
gates were used to implement it. This architecture can
operate videos in real time for HDTV 1080p
(1920x1080 pixels) resolution. In the worst case, this
architecture is able to process 63 HDTV frames per
second. In the average case, it can process 263 HDTV
frames per second. This architecture also reached the
highest frequency operation. However, it has not
reached the best performance because this architec-
ture uses more clock cycles than the QSDS-DIC
architecture with PU-82.

The best performance was achieved by the
QSDS-DIC architecture with PU-82, which uses 8-2
adder compressors. This architecture is able to run at
283.0 MHz and has the lowest latency among all pre-
sented solutions. This architecture can process 65 and
269 HDTV frames per second in the worst and the
average case, respectively.

In comparison to the original architecture, the
QSDS-DIC with PU-42 presented a gain of 8.6% in
the processing rate, with a very small increase in the
number of gates (5.7%). The QSDS-DIC with PU-82
presented the best results for processing rate. Gains of
12% and 3.7% were achievable by this architecture
when compared with the original and with the PU-42
solutions respectively. This gain was obtained at the
cost of a small 2.7% increase in terms of gates utiliza-
tion when compared with the original solution.

As future work we intend to develop 4-2 and 8-
2 subtracted compressors to use at the input of the
Processing Units and investigate the power consump-
tion of the implemented architectures.

REFERENCES

[1] M. Porto, L. Agostini, A. Susin, S. Bampi, “Architectural
Design for the New QSDS with Dynamic Iteration Control
Motion Estimation Algorithm Targeting HDTV,” ACM
Symposium on Integrated Circuits and System Design,
Gramado, Brazil, 2008. pp. 135-138.

[2] A. Weinberger, “4-2 Carry-Save Adder Module,” IBM
Technical Disclosure Bulletin, 1981.

[3] M. Mohammadzadeh, M. Eshghi, and M. Azdfar, “An
Optimized Systolic Array Architecture for Full-Search Block
Matching Algorithm and its-Implementation on FPGA chips,”
The 3rd International IEEE-NEWCAS Conference, 2005,
pp.174-177.

[4] K. Gaedke, M. Borsum, M. Georgi, A. Kluger, J. Le Glanic, P.
Bernard, “Architecture and VLSI Implementation of a pro-
grammable HD Real-Time Motion Estimator,” IEEE
International Symposium on Circuits and Systems, New
Orleans, USA, 2007. pp. 1609-1612.

[5] W. He and Z. Mao, “An Improved Frame-Level Pipelined
Architecture for High Resolution Video Motion Estimation,”
IEEE Int. Symposium on Circuits and Systems, New
Orleans, USA, 2007. pp. 1381-1384.

[6] C.-Y. Kao, C.-L. Wu, Y.-L. Lin, “A High-Performance Three-
Engine Architecture for H.264/AVC Fractional Motion
Estimation” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems. Volume PP, Forthcoming,
2009. pp. 1 - 5.

[7] D. Larkin, V. Muresan, N. O’Connor,“A Low Complexity
Hardware Architecture for Motion Estimation,” IEEE
International Symposium on Circuits and Systems, Island of
Kos, Greece, 2006, pp. 2677-2688.

[8] O. Tasdizen, A. Akin, H. Kukner, I. Hamzaoglu, “Dynamically
variable step search motion estimation algorithm and a
dynamically reconfigurable hardware for its implementation”
IEEE Transactions on Consumer Electronics, Volume 55,
Issue 3, August 2009. pp. 1645 - 1653

[9] V. Oklobdzija, D. Villeger, S. Liu, “A Method for Speed
Optimized Partial Product Reduction and Generation of Fast
Parallel Multipliers and Alghorimic Approach,” IEEE
Transaction on Computers, Vol.45, N_3, 1996.

[10] P. M. Kuhn, Algorithms, Complexity Analysis and VLSI
Architectures for MPEG-4 Motion Estimation. Springer, June
1999.

[11] M. Rehan, M. Watheq El-Kharashi, P. Agathoklis, and F.
Gebali, “An FPGA Implementation of the Flexible
TriangleSearch Algorithm for Block Based Motion
Estimation,” In: IEEE International Symposium on Circuits
and Systems, Island of Kos, Greece, 2006. pp. 521-523.

[12] T. Li, S. Li, C. Shen, “A Novel Configurable Motion Estimation
Architecture for High-Efficiency MPEG-4/H.264 Encoding,”
IEEE Asia and South Pacific Design Aut. Conf., Shanghai,
China, 2005, pp. 1264-1267.

008-Marcelo-AF 27.08.10 16:07 Page 88

