
35Journal Integrated Circuits and Systems 2011; v.6 / n.1:35-42

Efficient Interfacing of Partially Reconfigurable
Instruction Set Extensions for Softcore CPUs on FPGAs

1. INTRODUCTION

With the progress in silicon process technology,
FPGA capacity raised by orders of magnitude and
more focus in the research on run-time reconfigurable
systems has been put on exchanging larger and more
complex parts of the system. One of the reasons for
this trend is a lack in techniques for integrating recon-
figurable modules into a system.

This means that it is not only required to place
modules on an FPGA at run-time, it must also be
ensured that these modules can communicate with the
rest of the system.

This might be communication with other par-
tial modules as well as with the static system. The stat-
ic system provides the logic that is required at any time,
for example, a control CPU, a memory controller, and
the interface to the FPGA configuration port.

As running the logic placement and routing is
not appropriate to be performed at run-time for any
kind of complex module, it is common to provide
modules as precompiled bitstreams that can be direct-
ly loaded to the FPGA fabric.

While it is possible to manipulate minor parts
of the configuration data at run-time (e.g., the place-
ment coordinates [4]), the inner logic and routing of
a module will be kept untouched. In order to provide

communication to and from a reconfigurable module
for a particular signal, the FPGA routing resources
have to be constrained such that the same wire
resources that cross the partial module border are
used for each module at this position.

Let us assume a system with several reconfig-
urable modules being connected to the backplane bus
of a reconfigurable system over time. Then, the mod-
ule bus signals that have to be routed across the bor-
der to the static system are required to use the same
wire resources of the fabric among each particular
module.

For implementing reconfigurable systems, it
requires therefore additional constraints that 1) sepa-
rate reconfigurable resources from resources that are
used by the static system and 2) location constraints
on wires that are used to route signals across the bor-
der to a reconfigurable region.

Such constraints are vendor tool specific, as
HDL languages provide no constraints on routing or
logic resources. For example, in VHDL, the only stan-
dardized synthesizable attribute is on the encoding of
enumerated states, while all other attributes or con-
straints are not included in the language specification.
Originally, FPGA vendors, such as Xilinx Inc., adapt-
ed established ASIC design techniques to allow cus-
tomers to implement circuits on their devices. This

ABSTRACT

Swapping just small fractions of the configuration of an FPGA can be very beneficial in many appli-
cations. This is in particular useful for reconfiguring the instruction set of embedded soft core proces-
sors. In this paper, we will sketch that present design techniques include a substantial overhead for
integrating reconfigurable parts into the rest of the system. This overhead can cost more logic
resources than the actual module implementations. For removing this overhead, we propose a novel
technique to constrain the communication resources between the static system and the partial
regions. We will demonstrate for a reconfigurable soft core processor that instructions can be inte-
grated into the system without causing any additional logic overhead for the communication. In addi-
tion, we reveal how such systems can be easily implemented with our tool ReCoBus-Builder.
Furthermore, we will analyze the overhead in terms of reconfiguration time and present a metric
helping to take design decisions.

Index Terms: Partial Reconfiguration, FPGAs, Custom Instructions, CPU Instruction Set

Dirk Koch1, Christian Beckhoff2, and Jim Torresen1

1Department of Informatics, University of Oslo, Oslo (Norway)
2 ReCoBus (Germany),
e-mail: jics@recobus.de

04-Dirk-AF:04-Dirk-AF 8/19/11 6:17 AM Page 35

Efficient Interfacing of Partially Reconfigurable Instruction Set Extensions for Softcore CPUs on FPGAs
Koch, Christian & Torresen

36 Journal Integrated Circuits and Systems 2011; v.6 / n.1:35-42

results in limitations when designing run-time recon-
figurable systems and some extra effort is required to
apply the mentioned additional constraints.

Instead of providing a constraint allowing to
bind a signal directly to a definable wire resource,
Xilinx proposes to use macros that include routing
and that can be placed by the user. By arranging the
macro such that one part is located inside the recon-
figurable module and another part in the static region
of the system, routing can be constrained by internal
macro wires. The first macros [10], following this
approach, have been based on internal tristate drivers,
as depicted in Figure 1.

However, the tristate approach comes along
with multiple restrictions, including a relatively low
amount of available tristate wires, a risk of interfer-
ence between multiple reconfigurable modules, and a
moderate speed. Moreover, recent FPGAs provide
only tristate drivers in their I/O tiles but not inside
the fabric.

These issues have been solved with the intro-
duction of slice-based bus macros [7]. As illustrated in
Figure 2a), tristate drives have been basically replaced
with look-up tables (LUTs). In this approach, the
amount of extra logic that is required only for the
communication is substantial with two LUTs per bit
signal that is crossing the boundary of a reconfig-
urable module. Note that these are in general the sig-
nals in the entity and that a module can easily contain
a hundred or more individual signals in its entity.
Moreover, the look up tables constitute not only a
logic overhead, but also a latency overhead which is
roughly 0.4 ns on a Virtex-II FPGA per LUT.

In the latest design flow [11], as released by
Xilinx, the slice-based bus macros have been
improved by using only one LUT in the partial
region per bit signal as depicted in Figure 2b). This
technique uses an extra LUT as an anchor (called
proxy logic) to fix the routing for each bit signal to
this look-up table. The routing to the anchors is
determined during the implementation of the static
system and is then frozen during the physical imple-
mentation of each partial module. Note that this
requires to reimplement all partial modules in case of
a change in the static system. A further difficulty in
this design flow is that modules cannot be relocated
among different reconfigurable regions even if the
regions provide exactly the same shape and resources.
This is because the routing to the proxy logic will
typically vary among the reconfigurable regions and
because the static system may route signals through a
reconfigurable region.

As a consequence, modules must include this
routing of the static part, hence preventing module
relocation. For example, a system with four identical
reconfigurable regions for hosting 5 different kind of
modules demands 4 * 5=20 individual place and route

steps for the module implementation. Again, these
steps have to be repeated any time the static system
changes. Also the run-time system has to be aware of
the different module permutations.

Despite the progress in the Xilinx partial
design flow, this flow still comprises a large overhead
for the communication and is complex to handle. In
the following section, we will reveal a novel approach
that does neither demand extra logic for the commu-
nication, nor restricting the placement of reconfig-
urable modules by the static system.

In particular, this permits to migrate modules
among multiple different static systems without any
additional synthesis or place and route step. The
design flow will be demonstrated with the help of a
case study in Section 3 where instructions are inte-
grated dynamically into a system using partial recon-
figuration. Implementation details are summarized in
Section 4 and an overhead analysis will be presented in
Section 5.

Figure 1. TBUF bus macro [10]. The top and the bot-tom part
show two different configurations with the same static system. By
fixing the macro placement, signals are bound to tristate wires for
crossing the border to the partial region. Such wires have been
available in some older FPGAs, (e.g., Virtex-II) and could be
linked via buffers located inside the FPGA fabric.

Figure 2. a) Slice-based bus macros [7]. b) Integrating reconfig-
urable modules with proxy logic [11].

04-Dirk-AF:04-Dirk-AF 8/19/11 6:17 AM Page 36

Efficient Interfacing of Partially Reconfigurable Instruction Set Extensions for Softcore CPUs on FPGAs
Koch, Christian & Torresen

37Journal Integrated Circuits and Systems 2011; v.6 / n.1:35-42

2. ZERO LOGIC OVERHEAD INTEGRATION

As discussed in the last section, one basic prob-
lem to be solved in the design of partially reconfig-
urable systems is to constrain the routing for the inter-
face signals of a partial module during its physical
implementation. As illustrated in Figure 3, this is only
bound to FPGA routing resources crossing the border
to the partially reconfigurable region (PR region),
while the rest of the nets are not further restricted to
any special routing resources. In the Xilinx vendor
tools, there exist no constraints on routing resources
that 1) allow binding a signal to a dedicated wire
resource and 2) prohibit the usage of certain routing
resources. It is possible to define module bounding
boxes and prohibit regions, but this is restricted to
logic only.

However, it is possible to implement macros
that can use any kind of logic or routing resource.
Consequently, routing can be restricted with the help
of macros. Macros can be instantiated in a design like
any other module. During physical implementation,
the macros will be placed prior to any other logic.
Consequently, the internal logic layout and the rout-
ing of a macro will be preserved by the low level tools.
In other words, macros can be arranged following a
don’t touch policy. This can be used for 1) binding sig-
nals to wire resources and 2) for restricting the rout-
ing to selectable resources. The latter one is based on
occupying the resources with macros that are intend-
ed to be prohibited.

This has been used in the ReCoBus-Builder
framework [6] for implementing advanced bus-based
reconfigurable systems. In that work, larger reconfig-
urable regions can be tiled in a relatively fine tile grid.
A module can occupy one ore more of such tiles and
each tile provides communication to a backplane bus
as well as to a circuit switching network for high-
throughput streaming data. The communication
architecture is provided as large monolithic macros
that contain most of the bus logic. These macros are
synthesized automatically after floorplanning the sys-
tem. The macros are regularly designed such that the
logic and routing layout is exactly the same through-
out all tiles. Consequently, modules can be placed
freely within the reconfigurable area, as long as the
resources (e.g., dedicated multipliers or memory
blocks) match the module requirements. For strictly
encapsulating the module implementation from the
implementation of the static system, the tool can gen-
erate special blocker macros. To generate blocker
macros, it is possible to define a region in the floor-
planner GUI and to select which particular resources
(e.g., local wires or longlines) should be blocked.
With this information, ReCoBus-Builder generates a
corresponding macro that can either be directly
instantiated or be transparently included into the

design during the place and route phase. The macro
generation considers resources that may be already
occupied for implementing the communication
macros. Consequently, the tool provides a special
router for synthesizing blockers as a simple template
approach would not guarantee a complete blocking in
the case that resources have been allocated for the
communication infrastructure.

During the physical implementation of the stat-
ic system, blocker macros are used to prevent the
router to use wire resources within the PR regions.
Similarly, during the implementation of the partial
modules, blockers ensure that a module does not
occupy logic and routing resources outside the speci-
fied module bounding box.

By preventing the router to use a selectable set
of wire resources, we implicitly force to route signals
on the remaining (unblocked) wires. Consequently,
we can constrain routing to dedicated resources of the
FPGA fabric as sketched in Figure 4. However, in that
flow, we still require the shown connection primitives
that include an overhead

in terms of area and additional latency for pass-
ing the primitives.

In order to avoid the connection primitive, we
separate the blocking and the connection primitive
into two parts, one containing the macro part of the
PR region and another part with the blocker and con-
nection primitive inside the static system. During the
physical implementation of one part, the entire other

Figure 3. PR link approach. For providing communication with mod-
ules located in partial regions, signals will be bound to PR links.].

Figure 4. Constraining the routing of signals by blocker macros.
The example shows two blocker macros that congest all outgoing
signals in the entire tiles such that only the two wires for the PR
link remain to be usable by the router. When implementing the
static system (partial module), only the left (right) blocker is
instantiated for constraining the routing.

04-Dirk-AF:04-Dirk-AF 8/19/11 6:17 AM Page 37

Efficient Interfacing of Partially Reconfigurable Instruction Set Extensions for Softcore CPUs on FPGAs
Koch, Christian & Torresen

38 Journal Integrated Circuits and Systems 2011; v.6 / n.1:35-42

one is used for constraining the routing. For example,
when implementing a reconfigurable module, we will
only instantiate the blocker and the connection prim-
itive in the static part of the system, while not further
restricting the PR region. As the only non-blocked
resources are the ones assigned as a PR link, all mod-
ules will provide an identical interface to the static sys-
tem. This approach was integrated as a new feature to
our tool.

In the case that multiple wires are routed from
one configurable logic block (CLB) to another, wires
must be allocated that cannot be swapped. Allowing a
swapping of wires would allow the router to decide
between more than one option for a PR link, which
cannot be accepted. Our tool respects this issue by
suggesting wires that cannot swap. In the case of
Xilinx Virtex-II or Spartan-3 FPGAs, up to four sig-
nals can then be bridged per CLB. Thereby it is pos-
sible to use the four signals two times when consider-
ing both directions. Furthermore, by using wires
routing over a longer distance (e.g., double line or
hex lines), multiple consecutive CLBs can connect
even more PR links per row of CLBs.

Note that the reconfigurable modules and the
static system are implemented completely independ-
ently from each other. This provides manifold advan-
tages among the Xilinx partial design flow, including
module relocation (implying also multiple instances of
the same partial configuration bitstream), faster and
predictable changes (only changed parts are involved
in the physical implementation), and possible IP reuse
over multiple different systems. The IP reuse is possi-
ble among different devices of the same FPGA family
as long as the PR region and the relative position of
the PR links are identical.

3. CASE STUDY: RECONFIGURABLE
INSTRUCTION SET

A few very promising approaches during the
early days in run-time reconfiguration demonstrated
successfully the extension of a CPU with customized
reconfigurable instructions [9, 1, 3]. For example,
the dynamic instruction set computer (DISC) [9],
demonstrated a speedup of 80 for a mean convolution
application or the GARP, a MIPS processor with
reconfigurable instruction set extension [3], achieved
a 24 times higher throughput on DES encryption
than a SPARC processor and despite that the SPARC
operated on a higher clock frequency. Common in all
these publications is that relatively small reconfig-
urable parts demonstrated a material performance
improvement. The main reason for the improvement
is that major CPU time is spent on relatively small
compute kernels, which have been identified by pro-
filing several applications. Accelerating these kernels

with optimized instructions can consequently result in
a significant performance increase.

Designing a CPU or any other parts of a data
path using reconfigurable extensions may in some cases
not only speed up a computing intensive kernel, it may
also allow a higher clock frequency in general. When
assuming the simplified diagram of a CPU datapath in
Figure 5a), the ALU contains a multiplexer for select-
ing between the different sets of instructions of the
ALU (e.g., Boolean logic, simple arithmetic, shifter,
etc.). This multiplexer is in the critical path and unlike-
ly to be pipelined [8], and despite that an FPGA fabric
is mainly based on multiplexers, it is poor in imple-
menting wide input multiplexers, as listed in the fol-
lowing table that denotes the implementation cost of
multiplexers on Xilinx Virtex-II / Spartan-3 FPGAs:

As run-time reconfiguration can also be used to
multiplex between instructions, the final multiplexer
can then be smaller and consequently allowing higher
speed of the whole ALU. Of course, this implies a
coarse-grained triggering of different kinds of instruc-
tions that might be called at a task level, like for exam-
ple, instructions for either signal processing or cryp-
tography.

The reconfigurable instruction set example is
one of the most difficult examples for efficiently using
partial run-time reconfiguration. This is because the
instructions can be typically implemented with a rela-
tively low amount of logic, while requiring a relative-
ly high number of wires for connecting operands and
the result, as illustrated in Figure [5].

Let us assume a 32-bit wide data path as an
example, then interfacing a reconfigurable instruction
with two operands and one result requires roughly
100 wires. If we further consider two look-up tables
to implement the instruction per result bit, then we
have more wires to connect than actually LUTs. Note
that it can be useful to implement modules without
LUTs in some cases, e.g., for bit permutations.

When using the slice-based bus macro
approach from Xilinx (see Figure 2a)), the ratio LUTs
for interfacing to processing would be in this example:
~2*32+32/2*32=3. Similar worse, the propagation
delay would be roughly doubled. The situation will
become better when applying the new proxy logic

Figure 5. a) Example of a CPU data path. b) Extension of the
ALU with multiple reconfigurable instructions. The modules are
connected to the operands from the register file and a multiplex-
er selects between the different results.

04-Dirk-AF:04-Dirk-AF 8/19/11 6:17 AM Page 38

Efficient Interfacing of Partially Reconfigurable Instruction Set Extensions for Softcore CPUs on FPGAs
Koch, Christian & Torresen

39Journal Integrated Circuits and Systems 2011; v.6 / n.1:35-42

approach, but will still end up in an overhead that will
prohibit reconfigurable instructions in most practical
cases.

The situation changes dramatically when omit-
ting the connection logic for integrating partial mod-
ules. Besides reconfigurable instruction set extensions,
this is useful for any reconfigurable system, as in many
cases I/O bandwidth (which is also related to the
propagation delay of the interface) is a performance
bottleneck. As a case study, we consider to integrate
up to five different instructions into the system at the
same time. Instead of using five individual islands for
hosting the instruction modules (as it is common fol-
lowing the Xilinx PR flow), the system uses a more
flexible approach with one reconfigurable area that is
tiled into five resource slots, as depicted in Figure 6.
This has the advantage that modules of different size
can be more efficiently integrated into the system by
taking a variable amount of slots.

The communication architecture has to link the
two operands to each slot and the result vector back
individually for each slot to an instruction multiplexer.
By using different wire resources for the operands and
the result vectors that route over different distances,
both requirements can be properly implemented. By
taking advantage of the regular FPGA fabric, the slots
can be arranged completely identically, hence allowing
free placement of instructions into the reconfigurable
ALU. Figure 6 reveals a detail of the routing architec-
ture of Xilinx Virtex-II FPGAs that was used to pro-
vide slots that are smaller than the routing distance of
a wire. In the example, it is assumed that one resource
slot is only one CLB wide and that the operands are
routed using double lines that route two CLBs wide.
However, by using a connection in the middle of the
wire, which is provided by the routing fabric after a dis-
tance of one CLB, and by displacing the start points of
the regular routing structure of the two operands by
one CLB in horizontal direction, both operands can be
accessed in any slot. This is possible by routing the sig-
nals in an interleaved manner. Note that it is also pos-
sible to route paths by cascading multiple different
wires, which would allow to widen the slots (in terms
of CLB columns) and to extend the total amount of
slots for hosting modules. The interleaving results in
swapping the operands with respect to the placement
position (odd or even start slot). However, even for

functions that are not commutative, the same physical
implementation may be used at any placement posi-
tion. This is possible as the connection end port and
the middle port of the double lines provide connec-
tions to almost the same inputs. There exist also rout-
ing wires that route directly between adjacent CLBs,
but using these resources would result in a significant
higher latency and the total number of this kind of
wires is low. Consequently, these wires should be left
for the module implementation. More details on cas-
cading and interleaving routing resources can be found
in [5].

4. IMPLEMENTATION AND RESULTS

The case study has been implemented with the
tool ReCoBus-Builder on a Xilinx Virtex-II
XC2V500-5 FPGA. The tool generates regular struc-
tured macros together with the surrounding blocker
macros that constrain the routing. The implementa-
tion follows directly the methodology revealed in
Section 2. The communication macros provide the
connection primitives and fix the wire resources. The
ReCoBus-Builder generates all macros (including the
blocker) in the Xilinx design language (XDL) [12].
While communication macros are instantiated using
the HDL flow, the blockers are integrated into the
design just before the final route step.

On Xilinx FPGAs, LUTs are grouped into slices
that state the smallest primitive that can be instantiat-
ed. Therefore, our tool optimizes slice packing rather
than simple LUT packing. A floorplanning view on
the system is depicted in Figure 7.

Figure 6. Partial region of the reconfigurable ALU part. The slots
can host different sized modules.

Figure 7. Floorplanning view of the case study. Each gray square
repesents a CLB that provides eight 4-input LUTs. The five high-
lighted columns in the left half of the device are reserved for fos-
ting up to five different instructions. The sreenshot shows also the
communication macro linking the operands (32 bit each) and
additional control signals. This macro is only rquired for imple-
menting the reconfigurable modules and the blockers.

04-Dirk-AF:04-Dirk-AF 8/19/11 6:17 AM Page 39

Efficient Interfacing of Partially Reconfigurable Instruction Set Extensions for Softcore CPUs on FPGAs
Koch, Christian & Torresen

40 Journal Integrated Circuits and Systems 2011; v.6 / n.1:35-42

The area reserved for hosting reconfigurable
instructions is 8% of the total amount of CLBs that are
available on the used device. With 5 times 48 slices,
the PR region provides roughly 15%-20% the amount
of logic that would be required by an optimized 32 bit
soft core processor, such as the Xilinx Microblaze. For
the experiments, we used our own processor imple-
mentation that has not been optimized for speed or
area, but which can be easily adapted to include
reconfigurable instructions.

A. STATIC SYSTEM

During implementation of the static system,
connection primitives that are placed inside the recon-
figurable region and that are surrounded with blocker
macros have been used to constrain all signals
required to integrate the instructions. A screenshot
with the static system is shown in Figure 8. The
amount of wires that are connected from the static
part of the system to the PR region is 2*32 for the
operands plus additional 8 wires of control signals. In
reverse direction, each one out of the five slots deliv-
ers a 32 bit result plus additional four flags. This
results in a total amount of 64+8+5*(4+32)=252
wires.

According to the partial design flow provided
by Xilinx, the number of operand bits and control sig-
nals has to be multiplied by the number of slots, as
that flow does not consider multicast routing to mul-
tiple slots without additional connection primitives.
Then the slice based macro approach would cost
2*5*(72+36)=1080 LUTs only for the communica-
tion. This is 18% of the available LUTs on the target
device and roughly one third of the logic a fully fea-
tured 32 bit Microblaze soft core processor would
take. Even using the new flow that comprises only the

half overhead for the proxy logic would still result in
a remarkable overhead that can be omitted, when
using the here presented approach.

When floorplanning a reconfigurable system, it
is recommended to consider the underlying FPGA
architecture.

For example, Xilinx FPGAs are column-wise
reconfigured, which should be taken into account by
designing the slots vertically. This optimizes the
reconfiguration time. A restriction derived from the
full column reconfiguration scheme is that no distrib-
uted memory can be used directly above or below the
PR region as this would corrupt the state of these
primitives. Following this rule, partial reconfiguration
can be carried out while continuing the system to
operate. The architecture of an FPGA fabric is not
completely homogeneous. For example, in Virtex-II
FPGAs, carry chains, which are used for all kind of
arithmetic operations, are arraigned in upwards direc-
tion. This is considered in our tool by allowing to con-
nect bit vectors in the same direction along a resource
slot. In [2], a tool using a simulated annealing heuris-
tic was used to place communication macros around a
reconfigurable region that was also used for reconfig-
urable CPU extensions. Such tools may help for very
complex systems to improve performance but are
assumed to deliver no benefit in the relatively simple
designs examined in this paper.

B. RECONFIGURABLE INSTRUCTIONS

For implementing the reconfigurable mod-
ules, the complete static system has been substituted
with a communication macro, as depicted in Figure
9. This means that the reconfigurable modules can
be implemented in absence of the static system. As
can be seen in Figure 9 and Figure 10, each module
has been surrounded with a dedicated blocker macro
for restricting modules into strict bounding boxes.
Table 1 lists implementation details of the examined
instructions. The values in brackets denote the uti-
lization within the occupied slots. Despite that the

Figure 8. Xilinx FPGA editor view of the static system. The nets
for the operands are colored black and the result vectors are blue.
Blockers in the PR region prohibit routes of the static system.

Figure 9. View on the implementation of a CCITT CRC checker
instruction.

04-Dirk-AF:04-Dirk-AF 8/19/11 6:17 AM Page 40

Efficient Interfacing of Partially Reconfigurable Instruction Set Extensions for Softcore CPUs on FPGAs
Koch, Christian & Torresen

41Journal Integrated Circuits and Systems 2011; v.6 / n.1:35-42

CRC logic would easily fit into one slot, an addi-
tional slot was required to fully route the module.
The bitstream size states only the fraction of the par-
tial module and no static parts. The reconfiguration
time is manly related to the amount of slots that have
to be written to the device. A single slot configura-
tion is 11.6 KB on this device which results in 0.6 ms
configuration time, when assuming a configuration
speed of 20 MB/s. The latency was determined
using the FPGA editor. The values are measured
between the operand fetching pipeline register
through the combinatory path of the instruction and
further towards the output of the instruction select
multiplexer. The max value denotes the critical path
delay and the average delay over all paths. Note that
the control path of the CPU could be easily extend-
ed for multicycle operation. Consequently, slow
instructions will not decrease performance of the rest
of the CPU.

The examples point out that small FPGA areas
are sufficient to include very valuable instructions into
a CPU with the help of partial run-time reconfigura-
tion. Despite the small slots, a high number of signals
can be interfaced to partial modules.

5. OVERHEAD ANALYSIS

Swapping instructions comprises a significant
time for writing the corresponding partial bit stream
to the right target position. In addition, extra time
might be required for computing a placement position
or performing some bitstream manipulations. This
extra time overhead is implementation dependent and
will be not further considered. When taking the deci-
sion to use reconfigurable instructions, it is important
to know the latency that has to be considered for the
reconfiguration process (response time) and the time
the processor will require when executing the instruc-
tions alternatively as simple software function calls.

This determines the breakeven factor k and the system
has to trigger a reconfigurable instruction at least k
times before gaining a benefit in the total execution
time of the system. Note that we use function calls
and no traps, as traps are very specific for emulating
CPU instructions in software and because traps have a
tiny additional overhead that would not occur in case
of normal function calls.

The configuration times and the execution
times for software implementations of the custom
instructions (determined in a simulator) are listed in
Table 2. The reconfiguration process is relatively slow
and would consequently prevent using custom
instructions in time critical parts of the software (e.g.,
interrupts). However this is not problematic as criti-
cal software parts should typically not perform com-
plex computations. The breakeven factor k is the
number of possible invocations of a particular
instruction during the time to configure this instruc-
tion. As can be seen, for complex operations, such as
the CRC instruction, less than 300 calls of this recon-
figurable instruction would pay of the configuration
overhead; and even if an instruction can save only a
few cycles, this can pay of after just a few thousand
cycles.

It must be mentioned that the listed values are
theoretical and the breakeven points will probably be
likely higher. This is because the configuration data
transfer is in our system in conflict with the CPU
(shared memory buses); and even having only a few
KB of configuration data results in a burst affecting
the CPU. However, reconfigurable instructions are
still an interesting option for both saving FPGA
resources and gaining performance.

Figure 10. Different reconfigurable instructions: barrel shifter, sat-
uration add/subb, 64 input XOR gate, ‘1’ bit counter (from left to
right).

instruction slices slots latency (max/av)
64-bit XOR 19 (40%) 1 7.04 / 5.95 ns
CCITT CRC 33 (34%) 2* 5.32 / 3.98 ns
sat. add/sub 70 (73%) 2 9.89 / 7.81 ns
barrel shifter 90 (94%) 2 11.07 / 7.88 ns
‘1’ bit counter 214 (89%) 5 11.37 / 8.25 ns

mask&permute 16 (33%) 1 5.94 / 4.05 ns
(*extra slot for routing)

Table 1. Implementation details.The relative slice utilization deals
with the resources used in the occupied slots.

instruction slots bit-stream t conf. SW k @
[KB] [ms] [cy-cles] 50MHz

64-bit XOR 1 2.64 0.6 61 492
CCITT CRC 2* 5.28 1.2 215/257* 279/233
sat. add/sub 2 5.28 1.2 12 5000
barrel shifter 2 5.28 1.2 143 420
‘1’ counter 5 13.2 3 102 1471

m & p 1 2.64 0.6 98 306
(*extra slot for routing)

Table 2. Configuration time and software profiling. The second
value for the CRC instruction is for a CPU not featuring a barrel
shifter.

04-Dirk-AF:04-Dirk-AF 8/19/11 6:17 AM Page 41

Efficient Interfacing of Partially Reconfigurable Instruction Set Extensions for Softcore CPUs on FPGAs
Koch, Christian & Torresen

42 Journal Integrated Circuits and Systems 2011; v.6 / n.1:35-42

6. CONCLUSIONS

In this work, we proposed a novel technique to
include reconfigurable modules into a system running
on an FPGA without additional overhead for the com-
munication. We demonstrated the technique using a
dynamic instruction set case study where multiple
modules of different size can be integrated into an
ALU by using partial reconfiguration at run-time.
Furthermore, we revealed how the approach can be
implemented with the tool ReCoBus-Builder. As
compared to the competing slice-based bus macro
(proxy logic) approach provided by Xilinx, our results
demonstrated an area saving of 18% (9%) in the total
logic resources available on the used. This was
achieved by ommiting extra connection primitives (i.e.
look-up tables) in order to integrate reconfigurabe
instructions. Furthermore, we analyzed for various
custom instructions the corresponding configuration
overheads and determined the number of custom
instruction invocations required to achieve an overall
benefit. It has been proven that with only a relative
low number of custom instruction calls partial recon-
figuration will pay off and gain a material benefit.

Future work will target on supporting latest
devices directly by the tool and on further automating
the design process. At present, the trap handler is in
charge to manage the reconfiguration of instructions
into the system. For future systems, we aim at coupling
the reconfiguration with the task handler of the CPU
and an autonomous reconfiguration via DMA transfer.

ACKNOWLEDGEMENTS

This work is supported by the Norwegian
Research Council founded project Context Switching
Reconfigurable Hardware for Communication
Systems (COSRECOS) [13], under grant
191156V30.

REFERENCES

[1] P.M. Athanas and H.F. Silverman, “Processor Reconfiguration
Through Instruction-Set Metamorphosis: Compiler and
Architectures.” IEEE Computer, 26(3), 1993, pp 11-18.

[2] J.M. Carver, R.N. Pittman, and A.Forin, “Automatic Bus
Macro Placement for Partially Reconfigurable FPGA
Designs,” in Proceeding of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA),
2009, pp 269—272.

[3] J.R. Hauser and J. Wawrzynek, “Garp: a MIPS Processor
with a Reconfigurable Coprocessor,” in Proceedings of the
5th IEEE Symposium on FPGA-Based Custom Computing
Machines (FCCM), page12, Washington, DC, USA, 1997, pp
12-21.

[4] H. Kalte, G. Lee, M. Porrmann, and U. Rückert, “REPLICA: A
Bitstream Manipulation Filter for Module Relocation in
Partial Reconfigurable Systems,” in Proceedings of the 19th
International Parallel and Distributed Processing
Symposium - Reconfigurable Architectures Workshop
(IPDPS), IEEE Computer Society, 2005, pp 151-157.

[5] D. Koch, “Architectures, Methods, and Tools for Distributed
Run-time Reconfigurable FPGA-based Systems,” PhD the-
sis, University of Erlangen-Nuremberg, Germany, Erlangen,
Dec. 2009.

[6] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder— a
Novel Tool and Technique to Build Statically and Dynamically
Reconfigurable Systems for FPGAs,” in Proceedings of
International Conference on Field-Programmable Logic and
Applications (FPL 08), Heidelberg, Germany, 2008, pp 119-
124.

[7] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford,
“Invited Paper: Enhanced Architecture, Design
Methodologies and CAD Tools for Dynamic Reconfiguration
of Xilinx FPGAs,”in Proceedings of the 16th International
Conference on Field Programmable Logic and Application
(FPL), Aug 2006, pages 1-6.

[8] P. Metzgen, “A High Performance 32-bit ALU for
Programmable Logic,” in Proceedings of the ACM/SIGDA
12th International Symposium on Field Programmable Gate
Arrays (FPGA}, 2004, pp 61-70.

[9] M.J. Wirthlin and B.L. Hutchings, “DISC: the Dynamic
Instruction Set Computer,” in J.Schewel, editor, Proceedings
on Field Programmable Gate Arrays (FPGAs) for Fast Board
Development and Reconfigurable Computing (SPIE) 2607,
Bellingham, WA, 1995, pp 92-103.

[10] Xilinx Inc. “Two Flows for Partial Reconfiguration: Module
Based or Difference Based,” May 2002. Available online:
h t t p : / / w w w. x i l i n x . c o m / s u p p o r t / d o c u m e n t a t i o n /
a p p l i c a t i o n _ n o t e s / x a p p 2 9 0 . p d f
Xilinx Inc. “Partial Reconfiguration User Guide,” Rel. 12.1,
May. 2010, Available online: http://www.xilinx.com/support
/documentation/sw_manuals/xilinx12_1/ug702.pdf

[11] Xilinx Inc. “Partial Reconfiguration User Guide” Dec., 2009.
Release 11.4

[12] C. Beckhoff, D. Koch, J. Torresen. “The Xilinx Design
Language (XDL) – Tutorial and Use Cases” in Proceedings
of the 6th international workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC),
Montpellier, France, 2011.

[13] University of Oslo. “Context Switching Reconfigurable
Hardware for Communication Systems” project website:
h t t p : / / w w w . m n .
uio.no/ifi/english/research/projects/cosrecos/

04-Dirk-AF:04-Dirk-AF 8/19/11 6:17 AM Page 42

