
50 Journal Integrated Circuits and Systems 2011; v.6 / n.1:50-59

Framework for Generating Configurable SAT Solvers

1. INTRODUCTION

Satisfiability (SAT), a well known NP-
Complete problem, stands for proving that a proposi-
tional logic formula evaluates to true by some variable
assignment, or that there is no such assignment.
Despite SAT complexity, SAT solving techniques (e.g.
SAT solvers) have been successfully used, for almost
two decades, on important problems of the semicon-
ductor industry such as Combinational Equivalence
Checking (CEC) and Automatic Test Pattern
Generation (ATPG). Whereas CEC techniques prove
that two combinational circuits are (or not) function-
al equivalents; ATPG determines inputs that, when
applied to the circuit, show a stuck-at-value error.
Since SAT solvers have long been used for circuit ver-
ification, instances of this type of problem have also
been used as benchmarks for new SAT solvers.
Competitions as the one arranged by satcompeti-
tion.org provide industrial benchmark instances, some
of which are derived from CEC problems.

Even though several advances have been made
in SAT solving techniques in the last decade, some
classes of circuits such as the arithmetic ones continue
to be a great challenge for Electronic Design
Automation tools. For instance, proving functional
equivalence among multipliers and dividers usually
takes two or three orders of magnitude upward in
time in comparison to other combinational circuits,
such as adders, even with the same number of logic
gates; specially when SAT solvers are used. Andrade et
al [1] presents a comparison among the state-of-the-
art SAT solvers by using a benchmark with several
CEC instances derived from their circuit generation
tool. As demonstrated in that paper, multipliers and
dividers continue to challenge SAT solvers perform-
ance.

Another conclusion stated in Andrade’s paper is
that BerkMin [5] was the most suitable SAT solver for
the selected benchmark providing the best solving
times. Furthermore, proving functional equivalence
among multipliers of different architectures, which

ABSTRACT1

The state-of-the-art SAT solvers usually share the same core techniques, for instance: the watched
literals structure, conflict clause recording and non-chronological backtracking. Nevertheless, they
might differ in the elimination of learnt clauses, as well as in the decision heuristic. This article pres-
ents a framework for generating configurable SAT solvers. The proposed framework is composed of
the following components: a Base SAT Solver, a Perl Preprocessor, XML files (Solver Description
and Heuristics Description files) to describe each heuristic as well as the set of heuristics that the
generated solver uses. This solvers may use several techniques and heuristics such as those imple-
mented in BerkMin, and in Equivalence Checking of Dissimilar Circuits, and also in Minisat. In order
to demonstrate the effectiveness of the proposed framework, this article also presents three distinct
SAT solver instances generated by the framework to address a complex and challenging industry
problem: the Combinational Equivalence Checking problem (CEC).The first instance is a SAT solver
that uses BerkMin and Dissimilar Circuits core techniques except the learnt clause elimination
heuristic that has been adapted from Minisat; the second is another solver that combines BerkMin
and Minisat decision heuristics at run-time; and the third is yet another SAT solver that changes the
database reducing heuristic at run-time. The experiments demonstrate that the first SAT solver gen-
erated is a faster solver than state-of-the-art SAT solver BerkMin for several instances as well as for
Minisat in almost every instance.

Index Terms: SAT Solvers, Combinational Equivalence Checking, and Formal Verification.

Bernardo C. Vieira1, Fabrício V. Andrade2, and Antônio O. Fernandes3

1,3 C.S. Department, Universidade Federal de Minas Gerais, Antonio Carlos, 6627, Minas Gerais, Brazil
2 C. S. Department, Centro Federal de Educação Tecnológica de Minas Gerais, Amazonas, 5253, Minas Gerais, Brazil

e-mail: {bcvieira, otavio}@dcc.ufmg.br, vivas@decom.cefetmg.br

06-Bernardo-AF:06-Bernardo-AF 8/19/11 6:19 AM Page 50

Framework for Generating Configurable SAT Solvers
Vieira, Andrade & Fernandes

present few internal structural similarities (ie. Dadda
Tree x Wallace Tree), highly increases the complexity.
Although BerkMin presented the best results in the
referred paper, it is quite hard to theoretically demon-
strate the reason why it achieved such good results
since each SAT solver is usually implemented with sev-
eral slightly different heuristics and data structures.
Finally, BerkMin source code is not freely available
and many of its own implementation details may have
not yet been published.

In order to provide a clear opportunity for new
advances in SAT solving techniques through tackling
the previous mentioned problems, this paper propos-
es, implements and provides a framework for generat-
ing configurable SAT solvers so that the community
would be able to freely modify and test new tech-
niques and heuristics. Using the proposed framework,
another key contribution is achieved. By means of a
simple selection of different previously existent meth-
ods in a modular fashion, it is possible to achieve bet-
ter solving times than those obtained by important
and efficient SAT solvers, such as BerkMin, for sever-
al instances.

This article has the following outline: Section 2
explains the related work. Section 3 describes the
methodology and the implementation details used in
the framework for generating configurable SAT
solvers. Section 4 discloses the achievements and com-
pares results of generated solvers (SAT solvers
instances) with other state-of-the-art SAT solvers.
Section 5 exposes the final considerations and possible
future works.

2. RELATEDWORK

Nowadays, the majority of the SAT solvers
(DPLL [20] SAT solvers) share the same core which
is composed by several techniques that were previous-
ly proved successful1. The improvements achieved by
those techniques may be seen in the following papers:
GRASP [12], SATO [17], Chaff [11], zChaff [18].

The most important techniques and heuristics
used in currently available SAT solvers are listed in
order: clause learning, Unique Implication Points
(UIPs) and non-chronological backtracking (used in
GRASP); the “Two-Watched Literals” structure (pro-
posed by SATO, and modified by Chaff in the elimi-
nation of head and tail constraints); Variable State
Independent Decaying Sum (VSIDS) decision heuris-
tic (proposed by Chaff); the First-UIP in the zChaff
solver. The “Two-Watched Literals” structure is wide-
ly used because it does not require updates when a

conflict occurs2. In the conflict implication graph, a
UIP is a node at the current decision level such that
every path from the decision variable to the conflict
must go through it. The conflict clause is built by cuts
at UIPs. The First-UIP is the partition at the graph
that is closest to the conflict3.

Apart from the similarities, many other heuris-
tics have been proposed by the solvers. The BerkMin
solver proposes several changes in the basics struc-
tures. Based on observations, the authors organized
the set of learnt clauses as a stack. The closest topmost
non-satisfied clause was called the current clause. The
most active variable from the current clause was cho-
sen as the next variable of the search process. The
“activeness” of a variable is defined by the VIDS
heuristic, which keeps a counter to each variable,
counting the number of times the literals of a variable
appears at any clause. Those counters are periodically
multiplied by a decay factor, thus guiding the search
to the variables of the most recently added clauses.
Chaff states that this is a quasi-static search, because it
does not depends on the value of the variable and
gradually changes as conflict clauses are generated. In
BerkMin, the decay factor for the variables was modi-
fied to 4, increasing the sensibility to the new added
clauses. Conversely, Minisat [2] proposes an aggres-
sive learnt clause elimination procedure that just
leaves high activity or binary clauses.

Besides internal data structures and heuristics,
another key contribution is the extensibility and mod-
ularity of ths SAT solvers. Minisat, for instance, pro-
posed modularity through inheritance. Nevertheless,
this article proposes a different kind of modularity, in
which the specific data structures and operations of
each heuristics and techniques are modularized in sep-
arated XML descriptions.

SATenstein [9] proposed a different type of
modularization. Starting from the observation that
“designing algorithms for hard problems is difficult
and time consuming”, the authors proposed a gener-
alized and high parameterized solver framework, that
includes components from, or based at, other solvers.
The parameters control the instantiation and the
behavior of those components. This idea is very simi-
lar to the proposed approach. The authors, then, use
a black-box algorithm (see [7]) to find parameters
that represent high-performance instantiations of
SATenstein, according to the input SAT data sets.
SATenstein is based on SPEAR and PARAMILS [7],
but applied to stochastical local search. The major lim-
itation of SATenstein is how to tune its solver since
the algorithm to find the parameters is, as stated pre-
viously, a black-box one.

51Journal Integrated Circuits and Systems 2011; v.6 / n.1:50-59

1 A survey on the techniques and modules implemented in state-of-the-art DPLL SAT solvers was presented by Kautz and Selman[18].
2 More about this data structure is found at Chaff[11].
3 Explanations at zChaff[18]

06-Bernardo-AF:06-Bernardo-AF 8/19/11 6:19 AM Page 51

Framework for Generating Configurable SAT Solvers
Vieira, Andrade & Fernandes

SATzilla [16] is a “per-instance solver portfo-
lio” implements a new type of modularity. It con-
structs a model using a predefined set of complete
solvers (ie: Minisat, BerkMin). The model is trained
based on the run-time of each solver for each SAT
data set. On-line, the model, uses the SAT instance
features to choose the best solver from the portfolio,
and solves the instance. The present approach can be
integrated to SATzilla as one can generate solvers that
may be added to the portfolio.

Although several SAT solvers make use of mod-
ularity concepts, this article proposes and implements
a great extension to this concept which is a framework
for generating configurable SAT solvers.

3. FRAMEWORK FOR GENERATING
CONFIGURABLE SAT SOLVERS

A. Introduction

SAT solvers are proposed, implemented and sub-
mitted to competitions to have their performance meas-
ured, both in time and memory. Heuristics and param-
eters vary among solvers, and, usually, each solver reim-
plements its core techniques and heuristics (for instance,
the Watched Literals structure) from scratch. Therefore
it might be difficult to identify the reasons which influ-
enced a solver to achieve certain results in comparison to
other solvers. In order to provide clarity about new
heuristics and techniques, as well as a common method-
ology for SAT solver implementation, the present article
proposes a framework for generating configurable SAT
solvers. The key idea is to demonstrate a simple, though
robust, mechanism for storing and combining several
techniques and heuristics, to generate a new SAT solver
through simple configuration files.

Figure 1 shows the basic structure of current
SAT solvers. A description of a modified version of the
classic DPLL can be observed at its top.

The most common and significant (modified)
DPLL SAT solver heuristics and techniques are
among the following:

• ReduceDB - learnt clause elimination, or
database reducing method (also referred as
Database Management or DBManag).
Includes the condition in which this method
is called (called ReduceDBCond);

• Decide - choose the next free variable and its
assignment;

• Deduce - BCP (Boolean Constraint Propag-
ation);

• Diagnose - conflict clause learning and non-
chronological backtracking;

• Restart - restart the search maintaining some
solver state. Includes the condition in which
this method is called.

SAT solvers replicate this modified DPLL
structure. Many new SAT solvers, such as BerkMin,
Minisat and zChaff, could be considered specializa-
tions of that modified version of the DPLL SAT
solver, as illustrated in the figure 1. Whereas new
SAT solvers tend to preserve techniques inherited
from its classic version, there are those that change
and reimplement these techniques. For instance,
BerkMin implements a different decision heuristic
compared to DPLL, even though it uses a similar
Deduce engine.

As illustrated in Figure 1, the proposed frame-
work generates SAT solvers that may be described as
an inheritance of different SAT solvers. The expected
advantages of this framework are its robustness and
flexibility of new modules implementation. The
robustness comes from the fact that the same code is
used by several solvers, whereas the flexibility of
implementation derives from the modularization of
different heuristics and techniques in different files.

B. Definition of the Framework Implementation
Paradigm

Since this article proposes a framework for gen-
erating SAT solvers which is based on the division of
the heuristics and techniques in separate files, one file
for each heuristic/technique, the issue we worked on
was how to efficiently implement it. To address it,
three approaches were considered.

52 Journal Integrated Circuits and Systems 2011; v.6 / n.1:50-59

Figure 1. Logical view of SAT solvers implementations

06-Bernardo-AF:06-Bernardo-AF 8/19/11 6:19 AM Page 52

Framework for Generating Configurable SAT Solvers
Vieira, Andrade & Fernandes

The first implementation approach consists in
concentrate in the Object-Oriented Programming
(OOP) paradigm, creating classes of inheritance
among the heuristics. This is, basically, the modular
approach used by Minisat. For instance, a solver that
would implement Berkmin heuristics could be named
as BerkSolver and it would be child class from the class
Solver. Besides, for each possible module combination
from BerkSolver and Solver classes, there would be
derived classes represented by Solver1 and Solver2 as
illustrated in Figure 2.

Note that the user should decide which meth-
ods to use and which to reimplement according to the
base class. Although this approach is supported by the
OOP paradigm, it could lead to drawbacks. First, the
requirement of extra source codes and extra files to
provide the integration among the several inherited
classes from different heuristics. Another point to con-
sider is the amount of generated files for each possible
combination of heuristics.

Other implementation approach is the use of
inheritance class and compilation flags. Thus, instead
of an inheritance from different classes, the only inher-
itance allowed would be from a base skeleton class.
Consequently, the desired class would have the behav-
ior of the skeleton class with the changes determined
by the compilation flags. For instance, a #ifdef and
#endif directives could be used to select a different
type of Decide heuristic. This approach could prevent
code replication, since the user should select, accord-
ing to the chosen flags, which heuristics to instantiate.
Finally, a new SAT solver with different heuristics
could be created through the compilation of the class
inherited from the base skeleton class and the flags
chosen.

This approach presents improvements with
respect to the first approach; however, it would be
difficult to figure the source code of the entire proj-
ect. This happens because the user does not have a
global perspective on how the selected flags alter or
implement each part of the solver source code. In
addition, the C programming language does not
support chained macros. Therefore, this approach
requires solid programming skills to enable the cre-
ation of a SAT solver which possesses a clear source
code.

The last implementation approach considered,
takes in account the Aspect Orientation
Programming (AOP) paradigm. As a result, snippets
of the source code would be included according to a
pre-defined event, such as a method call. Note that
the main benefits of AOP from the implementation
of orthogonal components to the source code are:
non functional requirements or logging, as well as
less generation of code. The proposed framework was
created by implementing the third approach through
use of configuration files, C/C++ source codes, and a
Perl pre-processor.

C. Framework Components and Basic
Operation

The proposed framework is composed of the
following components: a Base Solver, a Perl
Preprocessor, XML files (Solver Description and
Heuristics Description files) to describe the heuristics
as well as the set of heuristics that the generated solver
uses. The framework basic operation is described in
Figure 3.

53Journal Integrated Circuits and Systems 2011; v.6 / n.1:50-59

Figure 2. Inheritance suggested by the first implementation ap-
proach Figure 3. Framework for generating configurable SAT solvers

06-Bernardo-AF:06-Bernardo-AF 8/19/11 6:19 AM Page 53

Framework for Generating Configurable SAT Solvers
Vieira, Andrade & Fernandes

First of all, a Base Solver is selected for the basic
operation of the framework. In the present work,
Minisat SAT solver has been selected for its competi-
tiveness, and because its source code is widely avail-
able. Then, it is necessary to identify and tag the
source code of the Base Solver, specially the parts of
the code that contain heuristics implementations,
since these parts may be replaced by source code of
different heuristics. For instance, variable database
management or decide procedures from other SAT
solvers. In other words, the Base Solver Deduce pro-
cedure is tagged because this part of the source code
may be replaced by another solver (Berkmin or Rsat)
Deduce procedure that is stored in XML files.

As shown in Figure 3, heuristics and techniques
(algorithms and data-structures) that might be new or
taken from other SAT solvers are selected, reimple-
mented, tagged and stored in XML files. Each XML
file also includes the same tags of the Base Solver in
order to create a unique correspondence among them.

After that, XML file that contains the Solver
Description, which has a list of modules representing
the set of heuristics, techniques, and parameters that
the generated solver uses, is created. Thereafter, it is
necessary to run a Perl Preprocessor, which consults the
selected heuristics from the Solver Description XML
file, and replaces the heuristics source code from the
tagged Base Solver to the Heuristics described in the
XML files (Heuristics Description files). Note that
using a preprocessor allows any code to be produced
in replacement of the tags, in any hierarchy and order,
which is more maintainable and reusable than storing
the source code and object files. This also links the
source code and object files, dynamically, as required.

After executing the preprocessor, the output is
a source code of a new SAT solver according to user’s
specification (Solver Description file). Then, according
to Figure 3, it is necessary to submit the source code
to a C++ compiler that, by its turn, outputs the bina-
ry file for the new SAT solver.

To provide more details about the implementa-
tion architecture, Listings 1 exemplify how a class solver
could be tagged. In this example, two types of tags are
used; the first indicates where the variable declaration
must be inserted, whereas the second illustrates where
the actual source code implementation must be put.

Listings 2 describes anHeuristic Description file.
This file type follows a pattern in which its first line has
the id that defines the name of the heuristic, in this
case, dbManag. Each heuristic described has one or
more mapping to the source code. Each mapping
starts with the tag macro and has an attribute named
id that identifies the marker; other attribute named
type which defines whether the source code marked
inside the tags <code> and </code> should be
appended or overwritten into the existent source code;
and yet another attribute named priority which

defines what type of macro is going to have priority in
case of a collision. The overwritten attribute has
greater priority with respect to the appended attribute.
There are two forms of the <code> and </code> tags:
a source code could be typed inside the tags, or a ref-
erence to file could be applied as shown in Listings 3.
Finally, Listings 4 describes the Solver Description file,
which consists of a reference to several heuristics files,
since a solver might be seen as a set of heuristics.

class USolver: public Solver{
//<!—USolver.h/declarations—>
};
//<!—USolver.h/implementations—>

Listings 1. Examples of marks or tags used in the Base Solver
source code

<heuristic id=”dbManag”>

<macro id=”USolver.h/declarations”
type=”append” priority=”0”>

<code>
protected:

void minisat_reduceDB() ;
void claDecayActivity() ;
void claBumpActivity(Clause& c) ;

</code>
</macro>

<macro id=”USolver.h/implementations”type=”append”
priority=”0”>

<file name=”minisat/dbmanag.implementation.h”/>
</macro>

</heuristic>

Listings 2. Example of Heuristics Description File

<heuristic id=”decide_berkmin_minisat”>
<subheuristic id=”minisat/decide.xml”/>
<subheuristic id=”berkmin/decide.xml”/>

</heuristic >

Listings 3. Example of how subheuristics may be used inside a
heuristic file

<solver id=”minisat”>
<output folder=”src-minisat”/>

<heuristic file=”minisat/dbmanag.xml” />
<heuristic file=”minisat/decide.xml”/>
<heuristic file=”minisat/reducedb.xml”/>
<heuristic file=”minisat/restart.xml”/>
<heuristic file=”minisat/simplify.xml”/>
<heuristic file=”minisat/var.xml”/>

</solver>

Listings 4. Example of XML Solver Description fle

54 Journal Integrated Circuits and Systems 2011; v.6 / n.1:50-59

06-Bernardo-AF:06-Bernardo-AF 8/19/11 6:19 AM Page 54

Framework for Generating Configurable SAT Solvers
Vieira, Andrade & Fernandes

D. Base Solver Internal Algorithms and Data
Structures

As mentioned previously, the proposed frame-
work is based on the Minisat implementation.
However, several changes in the internal algorithms
and data structures were performed in order to fit
this base solver into the framework. The most impor-
tant changes are described in the following para-
graphs.

The possibility of run-time changing of heuris-
tics lead to the replication of certain data structures,
whereas others were preserved. Both, Minisat and
BerkMin, use the “Two-Watched Literals” data struc-
ture. They also use a conflict clause learning scheme
that applies reverse BCP (resolution) up to the point
when there is only one literal at the level of the con-
flict on the reason side of the implication graph.
Those methods were left untouched in the new solver.
Moreover, the clause database is shared, even if the
heuristic is modified in run-time, as this is essential to
a real combination of methods, since they share the
same search-space.

The “var activity bumping” was not complete-
ly kept, as BerkMin bumps the activity in any inter-
mediate reverse BCP resolution step. This lead to a
replication of data structures (array of type double) for
the variable activity. The clause activity must also be
replicated. There are two clause activities, one for
BerkMin, based modules, and one for Minisat, also
based modules, because using BerkMin there is no
decay factor for clause activity and thresholds.

The major issue with the framework implemen-
tation is to define what should change on the module
when different solver heuristics are used. For instance,
using two identical signature modules, previously
allowed to change at run-time, will create one variable
to determine which module is called. In the frame-
work present configuration, the user can choose
between BerkMin and Minisat database management
heuristics, or their changing in run-time (files min-
isat/dbmanag.xml, berkmin/dbmanag.xml and combi-
nation/dbmanag.xml). This is also true for the deci-
sion variable (files minisat/decide.xml, berkmin/
decide.xml and combination/decide.xml).

Experiments confirm that the best results were
achieved when the decay factor was approximately 1
(1/0.995). The file that configures this parameter is
minisat/newparms.xml. The run time modifications
happen at every 50 restarts. BerkMin heuristics were
implemented as described by the papers [5] and [4].

E. Implemented CEC Heuristics

CEC allows us to demonstrate the impor-
tance of the approach presented previously; there-
fore, this subsection will provide the CEC imple-

mented modules. Goldberg and Novikov [5], [4]
presented modifications that achieved satisfactory
results to SAT solving CEC problems. BerkMin[5]
implemented:

•Learnt clause database as a stack. The top-
most clause is the last learnt clause;

•Decision Heuristic: choice of the variable.
When there are unsatisfied conflict clauses,
the most active variable clause of the topmost
clause of the database stack is chosen.
Otherwise the most active free variable of the
original clauses is chosen;

•Decision Heuristic: variable sign. When there
are unsatisfied conflict clauses, the variable’s
literal with greater literal activity is chosen,
otherwise the literal with greatest nb_two is
chosen;

• the new activity counter places (at each clause
used in reverse BCP);

•BerkMin’s learnt clause elimination heuristic.
Equivalence checking of dissimilar circuits

[4] explains the Common Specification (CS) as a
mechanism to generalize the notion of structural
similarity. In the Common Specification procedure,
the structure of the miter circuit, which is a
Boolean function, is represented as directed acyclic
graph. The two circuits can have intersections
between their subgraphs, which are determined by
correlation functions. The intersections are equiva-
lences themselves. Then, the specification of the
circuit is used to minimize the variable and clause
search space, which are used to guide the search at
the SAT level. A monotonically increasing function
is applied to the variable counters. This function
also depends on the variables subgraph depth from
the inputs. Goldberg and Novikov adapted the pat-
terns shown by CEC with CS in BerkMin solver,
and probably used the adaptations as its strategy 1.
They mimic short resolution proofs modifying the
decision and restart procedures. The decision pro-
cedure provided in the proposed framework may be
configured using the file dcircuit/var.xml, that
chooses from the top most clause the one with
greater activity even when the clause is satisfied.
The second change at the decision procedure is the
selection of the variable with greater activity multi-
plied by a monotonically growing function of the
level of that variable, where level is the topological
level of the variable starting from the inputs of a
circuit.

In the restart procedure the change is the
implementation of heavy and light restarts (config-
ured by dcircuit/restart.xml file). Light restarts occurs
at depth greater than 15 at the second conflict found
at the current search tree. Heavy restarts occurs at
each 500 conflicts. In heavy restarts, the database is
cleaned, whereas in light it is not.

55Journal Integrated Circuits and Systems 2011; v.6 / n.1:50-59

06-Bernardo-AF:06-Bernardo-AF 8/19/11 6:19 AM Page 55

Framework for Generating Configurable SAT Solvers
Vieira, Andrade & Fernandes

F. Using and Validating the Proposed
Framework

As previously explained, the proposed frame-
work that allows users to choose, implement and com-
bine heuristics and techniques according to their
needs. In order to demonstrate its effectiveness, this
article presents three distinct SAT solver instances,
generated by the framework, to be used in a complex
and important industry problem: the SAT-based
Combinational Equivalence Checking problem. The
first instance consists of adapting the aggressive data-
base reducing heuristics used in Minisat to BerkMin.
Minisat’s database reducing heuristics is more aggres-
sive because it keeps just binary clauses or those with
activity greater than a factor of the current activity
decay value and the number of clauses. The second
instance consists of changing the decision heuristic at
run-time. The third instance consists of changing the
database reducing heuristic at run-time. Considering
the first instance, it is arguable that smaller clauses can
improve the run-time since less cache misses are gen-
erated; and according to Malik et al[11], 90% of the
time is spent at Boolean Constraint Propagation
(BCP). Regarding the second and third instances, a
change in run-time in the decision heuristic, or in the
database reducing method, allows the search for dif-
ferent solution spaces, which is also achieved by the
use of restarts and clause recording. Dynamic chang-
ing of decision heuristics is presented at [3]. Restarts
and clause recording, according to Gomes et al [6]
brought SAT solvers in the direction of general reso-
lution, which is considered the main factor of efficien-
cy of SAT solvers in real world problems. Therefore,
the last two instances generated by the framework will
test the power of changing heuristics at run-time.

4. RESULTS

This section presents the results achieved by
applying CEC instances to the proposed SAT solver,
with different combinations of heuristics, generated
by the framework. The results are compared to
Minisat 2.0 [2], RSAT [10], Siege v4 [14] seed 100
and BerkMin561 strategy 1 [5]. The main objective of
the results is to compare BerkMin and Minisat to the
generated solvers, since they are combinations of
those solvers.

The benchmark is composed of miters of
adders, multipliers and dividers, from size 4 to 32,
generated using BenCGen [1]. This type of bench-
mark is used instead of the ISCAS 85 benchmarks as
the latter do not represent a challenge to the recent
state-of-the-art formal verification tools. Other

benchmarks, such as ISCAS 89 and IWLS-2005, were
not used because they are either outdated due to
Intellectual Properties, or have a small number of
combinational circuits. Conversely, BenCGen gener-
ates parametrized descriptions of n x n multipliers,
dividers and adders. After generating the circuits with
BenCGen, the miter is created using a sintetized
(using the ABC tool [13]) and non sintetized version
of the circuit. Due to space restrictions, the complete
results are available at
http://sites.google.com/site/modularsat/. Experiments
were also made with part of the DIMACS benchmark
for satisfiability. The results were obtained on an
Athlon IV 3.0 GHz with 2 GB of memory running
Fedora Core Linux OS 10.0. The total verification
time was measured in seconds. Four instances of the
modular solver were proposed. The first instance
(Instance 1, or I1) uses the implemented BerkMin
and Dissimilar Circuits modules, except the database
reducing module, that is taken from Minisat. The sec-
ond instance (Instance 2, or I2) is a modification of
Instance 1 and changes the decision heuristic at run-
time4, between BerkMin and Minisat. The third
instance (Instance 3) is another modification of
Instance 1, but changes the database reducing module
at run-time. The last instance, BerkMin*, is the imple-
mentation of BerkMin and Dissimilar Circuits, and
represents the experimental control.

Table I presents the results of the proposed
solvers, Minisat, BerkMin, Siege and RSAT for the
Wallace Tree Multiplier (WTM). As the circuit size
grows, the Instance 1 solver provides much better
results, as it starts to dramatically reduce the solving
time. Moreover, Instance 1 solves many more
instances than the other solvers assuming the 10,000
second time threshold.

Instance 1 achieved better results in 22 out of
26 instances when compared to the other solvers.

Tables II and III present the results, of the
same set of solvers, for of the proposed solvers,
Minisat, BerkMin, Siege and RSAT for the Carry
Look Ahead Multiplier (CLAM) and for the Non-
Restoring Divider (NRD). For the Non-Restoring
Divider and the Carry Look Ahead Multiplier,
Instance 1 performs better mainly between 9 and 12
bits. For those circuits, the Instance 1 achieved better
results in 11 out of 30 instances (BerkMin* and
Instance 3 won on some of them). In the other cases,
generally BerkMin is faster. The possible explanation is
that BerkMin uses a monotonically increasing func-
tion to sort the variable’s activity which the framework
does not yet implement.

While Instance 1 achieved consistent results for
WTM, the other two instances did not. However, they
could be of use as heuristics for other types of SAT

56 Journal Integrated Circuits and Systems 2011; v.6 / n.1:50-59

4 Again, using its own XML description.

06-Bernardo-AF:06-Bernardo-AF 8/19/11 6:19 AM Page 56

Framework for Generating Configurable SAT Solvers
Vieira, Andrade & Fernandes

57Journal Integrated Circuits and Systems 2011; v.6 / n.1:50-59

Table I. CEC Results of two Wallce Tree Multiplier copies
Results of Combinational Equivalence Checking for two Redundant Copies of a Wallace Tree Multiplier I-1Speed-up
Size # Clauses Rsat Minisat Siege Berkmin I-1 I-2 B* I-3 Berkmin Minisat
07x07 4392 7.071 3.460 6.566 3.370 3.319 4.343 3.398 4.494 1.5 4.2
08x08 5968 71.762 30.592 64.466 55.560 6.481 8.687 53.539 49.438 757 372
09x09 7882 656.789 287.092 1487.460 220.150 13.337 20.139 482.487 682.676 1550 2052
10x10 9980 4742.416 1585.400 >10000 265.480 24.702 34.360 459.993 1158.870 974 6318
11x11 12422 >10000 >10000 - 320.360 45.849 109.766 692.031 418.234 598 -
12x12 15254 - - - 494.920 45.300 224.696 659.738 655.669 992 -
13x13 18390 - - - 960.390 95.361 315.444 662.513 1785.760 907 -
14x14 21808 - - - 1131.380 198.663 1544.030 1349.530 2281.180 469 -
15x15 27102 - - - 1601.910 256.385 2087.330 556.870 1552.340 524 -
16x16 30084 - - - 2213.730 345.930 2784.490 1032.620 2974.510 539 -
17x17 34732 - - - 2762.060 427.325 >10000 1277.020 3241.660 546 -
18x18 41576 - - - 3006.490 598.568 - 1833.400 4736.130 402 -
19x19 47272 - - - 3292.240 912.636 - 2644.370 9565.280 260 -
20x20 51342 - - - 5080.990 1233.600 - 3888.640 >10000 311 -
21x21 60062 - - - 5465.910 1277.150 - 4527.720 - 327 -
22x22 67218 - - - 6094.130 3912.350 - 4964.160 - 55 -
23x23 72188 - - - 7438.480 2678.310 - 6538.850 - 177 -
24x24 83200 - - - 6999.700 2144.140 - 8374.540 - 226 -
25x25 88810 - - - >10000 3518.170 - >10000 - - -
26x26 101126 - - - - 4311.210 - - - - -
27x27 111040 - - - - 7892.150 - - - - -
28x28 121400 - - - - 7234.220 - - - - -

Table II. CEC Results of two Carry Look Ahead Multiplier copies
Results of Combinational Equivalence Checking for two Redundant Copies of a Carry Look Ahead Mutiplier I- Speed-up
Size # Clauses Rsat Minisat Siege Berkmin I-1 I-2 B* I-3 Berkmin Minisat
07x07 3158 2.433 2.166 6.025 3.690 8.052 9.897 3.284 4.987 -54 -73
08x08 4646 18.315 22.946 98.002 32.420 40.802 45.743 42.512 30.675 -20 -43
09x09 6586 49.530 91.338 1075.730 147.640 104.055 111.396 203.436 284.996 41 -12
10x10 9062 952.256 485.919 3416.990 386.060 216.800 666.551 868.389 1909.470 78 124
11x11 12166 2689.807 8804.550 4680.320 586.510 372.308 5029.800 2505.130 4012.240 57 2264
12x12 15998 >10000 >10000 >10000 829.240 838.303 >10000 9147.690 >10000 -1.0 -
13x13 20666 - - - 1259.000 1553.610 - >10000 - -18 -
14x14 26286 - - - 2030.420 2505.960 - - - -18 -
15x15 32982 - - - 2458.150 4639.290 - - - -47 -
16x16 40886 - - - 3494.290 8930.680 - - - -60 -
17x17 50138 - - - 5203.190 >10000 - - - - -
18x18 60886 - - - 6880.340 - - - - - -
19x19 73286 - - - 9482.060 - - - - - -

Table III. CEC Results of two Non-Restoring Divider copies
Results of Combinational Equivalence Checking for two Redundant Copies of a Nor Restoring Divider I- Speed-up
Size # Clauses Rsat Minisat Siege Berkmin I-1 I-2 B* I-3 Berkmin Minisat
07 2198 37.990 16.385 33.425 19.030 3.317 11.543 10.130 13.776 473 394
08 2847 281.643 220.935 322.359 40.430 5.389 33.600 16.313 21.582 650 3999
09 3580 2326.343 1579.840 2067.720 41.010 21.908 100.361 20.704 59.973 87 7111
10 4397 >10000 >10000 6268.130 64.860 43.311 627.817 41.970 126.256 49 -
11 5298 - - >10000 90.970 70.905 2354.630 70.095 290.436 28 -
12 6283 - - - 120.510 166.049 4859.400 220.908 489.522 -27 -
13 7352 - - - 262.010 169.038 >10000 429.191 1149.660 55 -
14 8505 - - - 217.230 410.910 - 600.733 1824.100 -47 -
15 9742 - - - 380.680 745.421 - 1055.040 3015.700 -48 -
16 11063 - - - 504.790 3662.640 - 1538.610 7805.340 -86 -
17 12468 - - - 680.900 1997.220 - 3162.390 9778.570 -65 -
18 13957 - - - 898.510 2942.230 - 4449.380 7318.760 -69 -
19 15530 - - - 1379.190 6071.070 - 6775.960 >10000 -77 -
20 17187 - - - 1636.410 >10000 - >10000 - - -
21 18928 - - - 2171.930 - - - - - -
22 20753 - - - 2935.480 - - - - - -
23 22662 - - - 4226.850 - - - - - -
24 24655 - - - 5086.610 - - - - - -
25 26732 - - - 5953.820 - - - - - -
26 28893 - - - 8800.340 - - - - - -

06-Bernardo-AF:06-Bernardo-AF 8/19/11 6:20 AM Page 57

Framework for Generating Configurable SAT Solvers
Vieira, Andrade & Fernandes

problems.
Concluding, the generated solvers are most

beneficial in situations where different heuristics are
better to be applied at different types of circuits, as the
same code is used in any situation. This is believed to
make the code more robust, as the code is tested in

many occasions.
Since a lower cache miss rate was predicted to

occur in Instance 1 Solver, a cache profiling using
Valgrind [15] was made to the Non Restoring Divider
and the Wallace Tree Multiplier. The results are found
at Figure 4, 5 and 6 for data access, Level 1 (L1) and
Level 2 (L2) caches. The organization of the cache is
L1 2-way associative, 64 KB,

L2 8-way associative, 521KB; with 64B block
size. Although BerkMin has a higher percentage of
cache misses in both circuits, it has a lower absolute
number of cache misses for the divider. In 14x14 bits,
the absolute number of Data L1 cache misses is the
same for Instance 1 and BerkMin. However, the num-
ber of BerkMin’s Data L2 cache misses is lower than
Instance 1’s. Therefore, the verification time for
BerkMin is also lower. For the 15x15 bits, the
Instance 1’s Data L1 cache misses is greater than
BerkMin’s. For the Wallace Tree, Instance 1 has the
lowest absolute number of cache misses, starting from
7x7 bits. The percentage of BerkMin’s Data L1 cache
misses is always greater than Instance 1. The Instance
1 percentage of cache misses is lower then BerkMin
for each of the circuits represented in Figure 4 because
the inherited Minisat clause database is composed of
smaller clauses, and also because the variable is chosen
from the topmost clause. If the clauses, which are
ordered, are smaller and the next variable is chosen
from the topmost clause, then it is expected that when
Instance 1 requests a clause it is already at the cache,
due to locality reference. To the nrdivider, the prob-
lem is that those clauses are not guiding the search to
a promising search space, at least not as good as
Berkmin, which is solving the problem in less time
(with less number of absolute cache access).

5. CONCLUSION AND FUTUREWORK

A framework for generating configurable SAT
solvers was proposed and implemented. This frame-
work is composed of the following components: a
Base SAT Solver, a Perl Preprocessor, XML files
(Solver Description and Heuristics Description) to
describe each heuristic as well as the set of heuristics
that the generated solver will use

To demonstrate the effectiveness of the pro-
posed approach, three instances were proposed for
improving performance for the CEC problem. They
were then checked in the new solver. The first instance
(using Minisat’s database reducing heuristic) looks to
be the more promising for the CEC problem. Also,
the proposed framework permits code reuse and fast
testing.

The analysis of the percentage and the total
value of cache misses have shown that Instance 1 have
the lowest percentage of cache misses. Therefore, the

58 Journal Integrated Circuits and Systems 2011; v.6 / n.1:50-59

Figure 4. Cache profiling graph for WTM and Nrdividers (circuit
size x percent cache miss)

Figure 6. Cache profiling graph for Wallace-Tree Multiplier (circuit
size x number of cache misses)

Figure 5. Cache profiling graph for Non-Restoring Dividers (circuit
size x number of cache misses)

06-Bernardo-AF:06-Bernardo-AF 8/19/11 6:20 AM Page 58

Framework for Generating Configurable SAT Solvers
Vieira, Andrade & Fernandes

smaller learnt clauses really lower the percentage of
cache misses. However BerkMin have a lower absolute
number of cache misses for the Nrdivider, making it
faster than Instance 1. This shows that the decision
heuristic, or the BerkMin’s maintained learnt clauses,
allows visits to more promising search spaces.

As a future work, an structure ordering of the
initial assignments should be studied, ie. J-frontier.
Moreover the use of the multiplicative function at the
sorting of variable’s activity should be tested. The
restart period should also be increased periodically to
guarantee termination as stated by Zhang and Malik
[19]. The profiling of cache misses between the dif-
ferent solvers should also be done, to verify the
expected decrease provided by the use of the Minisat
clause database heuristics. Other cache orientations
should also be tested.

The automatic configuration of the parameters
that control the instantiation and the behavior of the
modules is a big improvement and should be imple-
mented for the presented SAT solver. This would
allow a future comparison with SATenstein which
already implements these features.

REFERENCES

[1] F. V. Andrade, L. M. Silva, and A. O. Fernandes, “BenCGen:
a digital circuit generation tool for benchmarks”, in SBCCI
’08: Proceedings of the 21st Annual Symposium on
Integrated Circuits and System Design, pages 164–169,
New York, NY, USA, 2008. ACM

[2] N. Eén and N. Sörensson, “An extensible sat-solver”, in E.
Giunchiglia and A. Tacchella, editors, SAT, volume 2919 of
Lecture Notes in Computer Science, pages 502–518.
Springer, 2003.

[3] E. Giunchiglia and A. Tacchella, editors, “Theory and
Applications of Satisfiability Testing”, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May
5-8, 2003 Selected Revised Papers, volume 2919 of Lecture
Notes in Computer Science. Springer, 2004.

[4] E. Goldberg and Y. Novikov, “Equivalence checking of dis-
similar circuits.”, In IWLS-2003 12th International Workshop
on Logic and Synthesis, 2003.

[5] E. Goldberg and Y. Novikov, “Berkmin: A fast and robust sat-
solver.”, Discrete Applied Mathematics, 155(12):1549 –
1561, 2007.

[6] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman,
“Satisfiability Solvers, Handbook of Knowleadge
Representation, chapter 2. ELSEVIER, 2008.

[7] F. Hutter, D. Babic, H. H. Hoos, and A. J. Hu, “Boosting veri-
fication by automatic tuning of decision procedures.”, In
FMCAD ’07: Proceedings of the Formal Methods in
Computer Aided Design, pages 27–34, Washington, DC,
USA, 2007. IEEE Computer Society.

[8] H. Kautz and B. Selman, “The state of sat. Discrete Applied
Mathematics”, 155(12):1514 – 1524, 2007. SAT 2001, the
Fourth International Symposium on the Theory and
Applications of Satisfiability Testing.

[9] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown,
“Satenstein: automatically building local search sat solvers
from components.”, In IJCAI’09: Proceedings of the 21st
international jont conference on Artifical intelligence, pages
517–524, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc.

[10] Knot, “Rsat 2.0: Sat solver description”, Technical report,
Automated Reasoning Group, Computer Science, 2007.

[11] S. Malik, Y. Zhao, C. F. Madigan, L. Zhang, and M. W.
Moskewicz, “Chaff: Engineering an efficient sat solver.”,
Design Automation Conference, 0:530–535, 2001.

[12] J. P. Marques-Silva and K. A. Sakallah, “Grasp: A search
algorithm for propositional satisfiability.”, IEEE Transactions
on Computers, 48(5):506–521, 1999.

[13] A. Mishchenko, “ABC: A System for Sequential Synthesis
and Verification.”, Electrical Engineering and Computer
Sciences UC Berkley, http://www.eecs.berkeley.edu/ alan-
mi/abc/, 2009.

[14] L. Ryan, “Efficient algorithms for clause-learning sat
solvers.”, Master’s thesis, Simon Fraser University, 2002.

[15] Valgrind, “Valgrind 3.5.0.”, Valgrind Developers,
http://valgrind.org/, 2010.

[16] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla:
portfolio-based algorithm selection for sat.”, J. Artif. Int. Res.,
32(1):565–606, 2008.

[17] H. Zhang, “Sato: An efficient propositional prover.”, In CADE-
14: Proceedings of the 14th International Conference on
Automated Deduction, pages 272–275, London, UK, 1997.
Springer-Verlag.

[18] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik,
“Efficient conflict driven learning in a Boolean satisfiability
solver.”, In ICCAD ’01: Proceedings of the 2001 IEEE/ACM
international conference on Computer-aided design, pages
279–285, Piscataway, NJ, USA, 2001. IEEE Press.

[19] L. Zhang and S. Malik., “Validating sat solvers using an
independent resolution-based checker: Practical implemen-
tations and other applications.”, In DATE ’03: Proceedings of
the conference on Design, Automation and Test in Europe,
page 10880, Washington, DC, USA, 2003. IEEE Computer
Society.

[20] Davis, M., Logemann, G. and Loveland, D., “A machine
program for theorem-proving”, Commun. ACM, 1962,
5(7):394-397.

59Journal Integrated Circuits and Systems 2011; v.6 / n.1:50-59

06-Bernardo-AF:06-Bernardo-AF 8/19/11 6:20 AM Page 59

