
Design of an Improved and Robust Asynchronous
Wrapper (AW) for FPGA Applications

I. IntroductIon

Contemporary digital systems must necessarily
be based on the “System-on-Chip – SoC” concept. The
main reason for that is the need for satisfying the ever-
growing demand for higher performance, re-usability
and low-power requirements [1,2]. SoC circuits are
generally composed by functional modules, which can
be IP-cores (intellectual property cores), which are de-
veloped by many different vendors. These IP-cores are
pre-designed, verified, tested and optimized for high-
performance, allowing also cost reduction and shorter
development time. However, SoC circuits, when imple-
mented using a global clock signal, are subject to speed
and power penalties (clock skew, distribution networks,
etc.), leading to a very difficult timing analysis [3]. The
need for the implementation of SoC circuits in FPGAs,
leads to an even worse clock skew problem, once delays
between macro-cells can be very representative.

 A natural choice for these problems is the asyn-
chronous project methodology [3,6], which can elimi-
nate the previously mentioned challenges by removing
the clock signal from the design. But, once they are
built with asynchronous modules, some drawbacks can
be highlighted focusing on a trustable implementation:
a) the lack of reliable tools for asynchronous design; b)
difficulties found in hazard-free designing and testing;
c) limited culture on asynchronous design; and d) lack
of asynchronous IPs [7].

 Concerning to asynchronous controllers de-
sign in FPGAs [8-9], the drawbacks become even
worse, once the internal routing process between
macro-cells introduce significant delays that can result
in essential-hazard [6]. The more accepted solutions
found in literature are related to the circuit class, but the
work-around are limited to delay-element insertion, or
LUT placement, both solutions presenting difficulties
of implementation in commercial FPGAs.

AbstrAct1

Contemporary digital systems must be based on the “System-on-Chip – SoC” concept. An interesting
style for SoC design is the GALS paradigm (Globally Asynchronous, Locally Synchronous), which can
be used to implement circuits in FPGAs (Field Programmable Gate Arrays). However the implementation
of asynchronous interfaces (asynchronous wrapper – AW) constitutes a major drawback for this kind
of devices. Although there is a typical AW design style, which is based on asynchronous controllers
providing communication between modules (called ports), port controllers are subject to essential-
hazard when implemented in FPGAs. In this context, this paper proposes a new asynchronous GALS
wrapper architecture, suitable for implementations in any kind of FPGAs. The proposed port controllers
showed to be essential-hazard-free, not needing any special cares in implementation concerning to
LUTs choice. Additional advantages of the proposed architecture are: total autonomy that synchronous
modules achieve when interacting with the asynchronous wrapper; the ports can be synthesized in the
direct mapping style (so without knowledge of asynchronous logic synthesis); and the ports interact with
environment in Ib/Ob Mode, not needing a timing analysis. Simulation results show the applicability of the
proposed architecture and lead to its practical implementations in FPGAs.

Keywords: asynchronous logic; essential hazard; FPGA; interface; finite state machine; XBM
specification

Duarte L. Oliveira1, Lester A. Faria1 and Eduardo Lussari1,2

1Electronic Engineer Division Technological Institute of Aeronautics – ITA - SJC – São Paulo – Brazil
 email: duarte@ita.br , lester@ita.br

2Electronic Division Mectron Engenharia S.A. - SJC – São Paulo – Brazil
email: lussari@gmail.com.br

54 Journal of Integrated Circuits and Systems 2013; v.8 / n.1:54-63

Design of an Improved and Robust Asynchronous Wrapper (AW) for FPGA Applications
Oliveira, Faria & Lussari

55Journal of Integrated Circuits and Systems 2013; v.8 / n.1:54-63

other in an asynchronous form. To handle the asyn-
chronous communication between modules, an inter-
face circuit is added around each synchronous module,
what is called an Asynchronous Wrapper (AW). This
term was first used in [11], by Bormann and can be
built with local clocks, gated-clocks, FIFO, communi-
cation asynchronous controller (Input Ports, Output
Ports), etc. Techan et al. [12] shows the different styles
of asynchronous interfaces dedicated to GALS systems.
In this context, Asynchronous wrappers that make use
of Communication Ports (AW_P) are of main interest
because they allow removing the asynchronous hand-
shake scheme from the synchronous module, allowing
the design of each one of the synchronous modules
by using standard techniques of synchronous design.
Figure 1 shows a generic interface with a synchronous
module.

Locally
Synchronous

Module

Local clock
generator

Output port
controller

Input port
controller

Asynchronous Wrapper
Data_in Data_out

Figure 1. Asynchronous wrapper architecture, providing locally synchronous
modules to communicate to others in an asynchronous way, avoiding clock
skew problems in FPGA.

Although GALS is able to solve the problems re-

lated to the global clock signal, the communication be-
tween modules is already performed in the asynchronous
paradigm. The communication ports are asynchronous
controllers, and subject to its inherent problems. Jia [16]
shows the advantages of implementing GALS in FPGA,
highlighting the elimination of the clock skew problem.
On the other hand, the biggest problem of GALS ap-
proach for FPGAs is the asynchronous communication,
which must be performed by the controllers (ports) [17-
23], showing some kind of essential-hazard or not satis-
fying the isochronic fork concepts. The Speed-independent
or quasi delay-insensitive circuit class, equivalent to asyn-
chronous controllers, cannot be implemented in com-
mercial FPGAs because the lines between cells present
significant delay. Therefore, applying the isochronic fork
concept [6] in FPGAs is unnatural.

 In order to evaluate previous trials of dealing
with this problem, some works were found in litera-
ture, where different kinds of ports have been imple-
mented in FPGA, and were synthesized in the logic
synthesis style [6]. The ports proposed in [17-20] were
specified in STG (Signal Transition Graph), which is a
specification Petri-net-like, having been synthesized in
the Petrify tool [6]. These ports are controllers of quasi-
delay-insensitive (QDI) class, but the implementations
in FPGA required a very complicated choice of LUTs in
order to meet the requirement isochronic fork [6].

Therefore, intermediate solutions were previ-
ously proposed between totally synchronous and totally
asynchronous designs, such as the GALS methodology
(Globally Asynchronous Locally Synchronous), consisting
of many synchronous functional modules that commu-
nicate to each other in an asynchronous form. In order
to handle this asynchronous communication between
modules, an interface circuit is added around each
synchronous module, what is called an Asynchronous
Wrapper (AW). In the AW, the communication is
performed by ports (asynchronous controllers), which
show to be subject to inherent problems. Considering
all the previous works found in literature, different
Asynchronous Wrapper Ports (AW_P) focusing on
FPGAs [17-23] showed some kind of essential-hazard,
or did not satisfy the isochronic fork concepts.

In this context, this paper proposes an AW_P
that, making use of a pausible local-clock, showed to be
completely free of essential-hazard, improving all the
previous works found in literature and allowing its im-
plementation in any kind of FPGA. Additional advan-
tages of the proposed architecture are: total autonomy
that synchronous modules achieve when interacting
with the asynchronous wrapper; the ports can be syn-
thesized without any knowledge of asynchronous logic
synthesis, once it is used the direct mapping style; and
ports interact with environment in Ib/Ob Mode, not
needing a timing analysis.

In order to achieve this goal, this paper is di-
vided in 7 sections. While section 2 presents a theoreti-
cal background on the related topics discussed on this
paper, section 3 describes the architecture of the differ-
ent blocks that compose the final structure, section 4
elucidates the Mapping-Direct XBM methodology and
presents, as well, the Essential-Hazard-Free specifica-
tion for the ports design. Section 5 shows, step-by-
step the design of the hazard-free ports; and section
6 relates to simulation results and further discussions.
Finally, section 7 presents some concluding remarks
and future works.

II. theorectIcAl bAcKground

FPGAs have become a popular solution for im-
plementing digital circuits because of their low-cost and
short development time benefits. This technology has
been growing considerably in the last years, presenting
million-gates FPGAs that allow the implementation of
complex digital systems [4,5].

On the other hand, the term GALS was first
used by Chapiro in [10], having been successfully
used in many implementations, including FPGAs [15]
and ASIC (Application Specific Integrated Circuit)
[13,14]. A GALS system consists of many synchronous
functional modules (that may be IPs), which carries its
own individual clock signals and communicate to each

Design of an Improved and Robust Asynchronous Wrapper (AW) for FPGA Applications
Oliveira, Faria & Lussari

56 Journal of Integrated Circuits and Systems 2013; v.8 / n.1:54-63

On the other hand, the ports proposed in [21-
23] were specified in XBM (Extended Burst-Mode)
and BM (Burst-Mode). These ports were implement-
ed, respectively, in 3D [25] and Minimalist [26] tools,
on Huffman architecture with output feedback. These
ports are controllers of bounded gate and wire delay
(BGWD) class, interacting with the environment in
the generalized fundamental mode (GFM), leading to a
high necessity of timing analysis. They are subject to es-
sential hazard, therefore requiring the insertion of delay
elements.

In order to implement the FPGA ports, Pontes et
al. [22] inserted delays to meet GFM (Fig. 7 - delay-1)
and used the hard macros technique to choose specific
LUTs and to avoid essential hazard. In the same way,
Farouk et al. [20] had to choose specific LUTs in order
to meet isochronic fork restrictions [6].

As could be seen in [21], the implementation
of the AW_P in FPGAs presents two main problems:
firstly, the two different ports (input and output) operate
at GFM, leading to the need of a timing analysis and re-
quiring that the interaction with the environment must
be slow enough to allow the stabilization of the ports;
and secondly, the input port presents essential-hazard.
Figure 2 shows a simulation of the input port in platform
ALTERA, showing the existence of essential-hazard.

Figure 2. Simulation: input port of [21] presenting essencial hazard

In this paper we show that, through our propos-
al of implementation (Direct mapping - MAP_DIR_
XBM) [24]), it is possible to achieve an improvement
on this performance, leading not only to a more ro-
bust controller (considering technology changes), but
also not needing any time analysis, what leads to FPGA
implementation independent of the mapping and rout-
ing. It is also introduced the “necessary and sufficient”
condition for synthesizing the hazard-free ports by
MAP_DIR_XBM method.

III. ArchItecture

A. Asynchronous Wrapper

 The main objective of the proposed architec-
ture is to provide a weak interface interaction between

the locally synchronous module (LSM) and asynchro-
nous interface. It is an upgrade of the architecture previ-
ously shown in [23]. Figure 3 shows the variables “data
available” and “data accept” as the only ones used for
the communication between the LSM and the interface
[23]. It is possible to see that, when data available = 1,
data is ready to be transmitted, and when data accept =
1, data will be received.

Locally
Synchronous

Module

LCLK

Data
Available

Output
Interface

RT

AT

Asynchronous Wrapper

DATA

LCLK

Data
AcceptRR

AR

Asynchronous Wrapper

DATA

Input
Interface

Locally
Synchronous

Module

(a) (b)

Figure 3. Locally synchronous module presenting weak interface in-
teraction between the locally synchronous module (LSM) and asyn-
chronous interface: a) output; b) input [23].

On the other hand, Fig. 4 and 5 show the ar-
chitectures of our proposed input/output communica-
tion control ports (interfaces), which implements the
weak interaction between the interface and the LSM,
through the insertion of a pausible clock generator. This
new architecture works perfectly and shows to be an
alternative option of implementation to the previous
ones, considering the advantages of a Pausible Clock
Generator.

Q

Q
SET

CLR

D
Locally

Synchronous
Module

LCLK

Data
Available

DATA RECEIVER

DQ

Q

AR

RR

R1_CLK A1_CLK

En_D

Latch

Reset

INPUT INTERFACE

Port
entrada

(AFSM)

Pausible Clock
Generator

Figure 4. Proposed input interface/control.

Design of an Improved and Robust Asynchronous Wrapper (AW) for FPGA Applications
Oliveira, Faria & Lussari

57Journal of Integrated Circuits and Systems 2013; v.8 / n.1:54-63

Locally
Synchronous

Module

LCLK

Data
Available

 DATA TRANSMITTER

Q

Q
SET

CLR

D
D Q

Q

Output
PORT
(AFSM)

RT

AT

Pausible Clock
Generator

R2_CLK
A2_CLK

En_D

Latch

Reset

OUTPUT INTERFACE

Figure 5. Proposed output interface/control.

Considering the architectures presented in Fig.4

and 5, Fig.6 summarizes the proposed asynchronous
wrapper that receives and transmits data and can be
compared to the one presented in Fig.3.

Locally
Synchronous

Module

DATA DATA

Pausible Clock
Generator

LCLK

Input
Control

Data
Accepts

Output
Control

Data
available

Asynchronous Wrapper

R1_CLK

A1_CLK

RR

AR

RT

AT

R2_CLK

A2_CLK

Latches

Figure 6. Proposed I/O Asynchronous Wrapper (AW) – Full
Architecture.

As can be seen in Fig.6, the proposed AW com-

prises five blocks: locally synchronous module, two dif-
ferent controls (for input and output of data – Fig.4
and 5), a pausible clock generator (which can generate
the signal for both controllers together) and a register
based on transparent latches. In order to implement
this kind of architecture using PCG, some efforts have
to be done, once the target architecture may be focused
in a FPGA implementation. It is described below.

B. Pausible Clock Generator

Different kinds of Pausible Clock Generators
(PCG) have been proposed and can be found in litera-
ture. Many ones are based on arbitrators (MUTEX),
being inappropriate for FPGA. In [22, 27] some PCGs
are proposed by using only logic gates and C latches. In
order to illustrate and compare these architectures with
the new one proposed in this paper, Fig. 7 and 8 show
different kinds of PCGs, with the arbitrators based on
basic gates and using the C-latches, while Fig. 9 shows
the improved proposed pausible clock generator that
shows to be full suitable for FPGA implementation and
achieves a performance not shown by the previous ones.

Delay-1

1

0

Mux
2x1

C

De
lay

-2

Delay-3

Req Ack

LCLK

 Figure 7. Pausible clock generator of [22]

Delay

C

Req
Ack

LCLK

Reset

Figure 8. Pausible clock generator of [27].

R_CLK A_CLK

Delay-1

LCLK

Reset_CLK

Delay-2

Figure 9. Proposed pausible clock generator that fullfills the re-
quirements for FPGA implementation.

Once our AW architecture depends on a func-

tional PCG, Fig.9 shows the developed architecture that
makes our PCG not only a new one, but the one that
works correctly for all FPGAs. In this design, the pause
occurs when RCLK goes 0à1 and the clock LCLK goes
1à0. Activation of the clock LCLK 0à1 occurs when
RCLK 1à0. Figure 10 shows the timing diagram of the
proposed PCG. Figure 11 shows a symmetrical delay
based on FFs, being full accepted by the compilers of
FPGAs and, finally, Fig. 12 shows the proposed PCG
with two possible pause entrances.

 These architectures were developed focusing
on FPGA implementation and showed to be fully ef-
ficient. Specific details on the design of them are out
of the scope of this work, once it is part of the major
proposed block AW that was previous described. Blocks
with similar functionalities were not found in literature.

Design of an Improved and Robust Asynchronous Wrapper (AW) for FPGA Applications
Oliveira, Faria & Lussari

58 Journal of Integrated Circuits and Systems 2013; v.8 / n.1:54-63

R_CLK

LCLK

Figure 10. Timing diagram: pausible clock generator.

Reset

Q

Q
SET

CLR

D 1
0

M
u

x
 2

x
1

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Figure 11. Symmetric delay.

R1_CLK A1_CLK

Delay-1

LCLK

Reset_CLK

Delay-2

R2_CLK

A2_CLK

Figure 12. Proposed PCG: two input for stopping.

C. Ports: Essential-Hazard-Free specification

 The so-called essential-hazard problem was first
studied by Unger in [28]. He showed that essential-hazard
is related to the specifications, considering BGWD asyn-
chronous controllers. The proposed solution was the inser-
tion of delay elements in the feedback lines. Unfortunately,
it leads to a reduction of the reliability, modularity, tech-
nology migration and raising timing analysis problems.
Oliveira et al. in [29] proposed a method in logic-synthe-
sis style, which parts from the burst-mode specification
(BM), synthesizing essential-hazard free asynchronous
controllers without inserting any delay elements. As an
initial condition for the implementation of this method,
it is required that BM specification satisfies the “essential
signal condition” [29]. It can be shown that “essential sig-
nal condition” [29] can be extended also to the extended
burst-mode (XBM) specification. The BM specification,
proposed by Nowick [30] and later extended by Yun in
[25] as XBM specification, are quite popular to describe
asynchronous controllers once they are familiar to design-
ers of synchronous paradigm.

 As an example, Fig.13 shows an XBM specifica-
tion with inputs [a, b, c, d] and output [x, y, z], where the

signal a represents a level sensitive signal (LSS) and the
signals [b, c, d] are transition sensitive signals (TSS). TSS
signals can be classified as “direct-don’t-care” or “termi-
nating” signals. The state transitions are labeled with
the input burst/output burst (Ib/Ob) signals, where it
is possible to find Ob = Æ. In the state transition from
state 3à4, the signal b* is a “direct don’t-care signal”
and the signal c is a “terminating edge signal”. For more
information on the XBM specification, refer to [25].

5

43
1

0

2

6

b- d- / y-

b* d+ / x- y+

b* c- / y-

c+ / x+

<a+>
b+ / y+

 <a->
b+ / x- z+

c- / y+

b- / y- z-

Figure 13. XBM specification.

The essential-hazard-free condition is based on
the concepts of essential signals, proposed by Oliveira
et al. in [29], for the Burst-Mode specification. In the
XBM specification, during the state transitions, an input
signal is considered a context signal only if it doesn’t
change its value during this transition (the signal must
not be present in the label). On the other hand, an in-
put signal is considered a trigger signal if it is labeled
for this transition. As an example, consider 5→0 state
transition, in Fig. 13 above. The signals b and d are con-
sidered trigger signals while signal c is a context signal
(its value is 0).

Definition

Let A and B be a pair of states in an XBM speci-
fication and Ib/Ob be the input/output burst for the
A→B transition, being Es an input signal (Es ∈ Ib) clas-
sified as terminating TSS. Es will be an essential signal
only if it is a context signal in all transitions that are
incident on state A and it is a trigger signal on the tran-
sition A→B.

For instance (see Fig. 13), b and d are not essen-
tial on transition 5→0 because they are trigger signals
on transition 4→5. Signal b is essential on transitions
1→2 and 1→3, because it is a context signal on transi-
tion 0→1.

Lemma

(Essential Signal Condition – ESC) – The XBM
specification is essential-hazard-free (XBM_EHF) if,
and only if, for each state transition tr ∈ XBM that is
labeled by the Ibr/Obr and where Obr # Ø, there must
be, at least, one essential input signal. The proof of this
lemma is similar to that one found in [29].

Design of an Improved and Robust Asynchronous Wrapper (AW) for FPGA Applications
Oliveira, Faria & Lussari

59Journal of Integrated Circuits and Systems 2013; v.8 / n.1:54-63

of a memory element + a block of combinational logic
(condition logic – CL), as presented in Fig. 17.

Outputs
Inputs

Functions Ri

Signals Ro

Bank
of

Latches
RS

Logic
Blocks

Network
of

control cells
Condition

Logic

Figure 16. Structure: target architecture proposed and described
by [24].

Ro’s

Ri

Ai

Ro

Ao

Cell-j

Condition
logic-J

(CL)Inputs

Figure 17. Control Cell

A. Memory element

As can be seen in Fig. 18, and was previously
described in [24], the Memory Element presents two
input signals [Ri, Ai] and two output signals [Ro, Ao].
Figure 19 shows the behavior of the memory element
used in the MAP_DIR_XBM method. The input sig-
nal Ri enables the present state, while the output sig-
nal Ro triggers the enabling of the next state. On the
other hand, the output signal Ao triggers the disabling
process of the previous state, while the input signal Ai
disables the state.

Ai

Ri Ro

Ao

Figure 18. Memory element (Cell) of [24].

Ri

Ro

Ao

Ai

Figure 19. Timing diagram of the memory element.

Figures 14 and 15 show, respectively, the XBM
and BM specifications of the input and output ports of
the AW_P [21]. Their descriptions are already adapted
for use in the proposed AW_P. Applying the lemma
3.3.1, it can be concluded that these specifications
are XBM_EHF specifications. Although being a EHF
specification, it was shown that the implementation of
this input port by the 3D tool generates essential haz-
ard, leading to the conclusion that lemma 3.3.1 is nec-
essary but not sufficient.

En_D+ RR+ /
 R1_CLK+

0

1

2

34

5

6

7

A1_CLK+ /
AR+

RR- /
R1_CLK- AR-

A1_CLK- RR* /

En_D- RR+ /
R1_CLK+

A1_CLK+ /
AR+

RR- /
R1_CLK- AR-

A1_CLK- RR*/

Figure 14. XBM specification: input port.

2

3

4

56

7

8

11

A2_CLK+ /
 RT-

AT- /
R2_CLK-

A2_CLK- En_D- /
RT+

AT+ / R2_CLK+
A2_CLK+ / RT-

AT- /
R2_CLK-

A2_CLK- En_D+ /
RT+

AT+ / R2_CLK+
0

En_D+ / RT+

Figure 15. BM specification: output port

IV. MAPPIng_dIrect_XbM : MethodologY

MAP_DIR_XBM method, proposed and de-
scribed in [24], uses the direct mapping style for the
synthesis of XBM asynchronous controllers. In this sec-
tion, besides presenting the MAP_DIR_XBM method,
it is introduced the sufficient condition that guarantees
implementability of XBM controllers, free of essential
hazard, improving lemma 3.3.1.

Figure 16 shows the logic structure of the tar-
get architecture for states (I,j) of the port controllers,
built from the CC (control cell) and LO (logic output
– standard RS architecture) blocks. Each state of the
XBM is associated to a control cell (CC), which consists

Design of an Improved and Robust Asynchronous Wrapper (AW) for FPGA Applications
Oliveira, Faria & Lussari

60 Journal of Integrated Circuits and Systems 2013; v.8 / n.1:54-63

B. Synthesis methodology

The behavior of the Communication Port
(AFSM) of a GALS system is captured initially by the
XBM specification, as illustrated in Fig.14. The synthe-
sis procedure for the MAP_DIR_XBM method consists
of seven steps:
1. Each state of the XBM specification will be repre-

sented by a CC. Paths with two state transitions
must have a support CC.

2. For each CC, there is a CL (Condition Logic – exci-
tation equation) block. The output of the CL is con-
nected to the Req-in (memory elements). Support
CCs do not need CL blocks.

3. Connect Ro-i→CL-j for each state transition, where
signal Ro belongs to the initial state cell, and the CL
block is related to the final state.

4. Connect Ao-j→Ai-i for each state transition on the
backward direction. When there are two or more
connections arriving at the Ai signal (decision
state), a junction (JOIN) must be generated.

5. For each state j of the XBM that corresponds to
the CLj block, extract the sum-of-products Boolean
function. Each state transition that comes from
state j generates a product with trigger signals of type
terminating edge that belongs to the input burst.

6. In each connection junction (JOIN), replace it by
an OR gate.

7. Using the Ro signals from the CCs, extract the sum-
of-product minimized Boolean functions FSET and
FRESET (standard RS architecture) of the output sig-
nals.

C. Condition for the Implementation of EHF Ports

An essential hazard occurs in a XBM_AFSM

when there is a race between input signals (belonging
to a burst input) and the state variables, considering
that this race is won by some of the state variable. The
circuits obtained by the MAP_DIR_XBM method in-
teract with the environment on the Ib/Ob mode. If the
circuit satisfies the Lemma 4.3.1 below, it satisfies the
unbounded gate and wire delay model. Therefore, the
circuit is not sensible to the effects of cell mapping in
FPGAs and to variations on the temperature and on the
power source. Therefore, the synthesized communica-
tion ports are EHF. The implementation of ports that
satisfies lemma 4.3.1 makes robust ports and, as conse-
quence, we obtain a robust asynchronous wrapper.

Lemma

The resulting circuit based on a net of cells is con-
sidered EHF if, and only if, it is synthesized by the MAP_
DIR_XBM method and the XBM specification is EHF.

Proof: Be any state transitions Si→Sj→Sk Î XBM
specification, being labeled, respectively, by Ibj and Ibk.

In the network of cells, the state Sj is activated by the
signal Ro-i (which behaviors as a state variable) and by
the input burst Ibj. The activation state Sj leads to the ac-
tivation signal Ro-j that activates the next state Sk. Like
Ibk ⊄ Ibj, once the essential signal Es-k ∉ Ibj, because
Es-k belongs to Ibk and was not activated because the
XBM is EHF. Therefore the state Sk is not activated,
what means that there was not any race that could acti-
vate the state Sk.

V. desIgn oF the hAzArd-Free Ports

The lemma 4.3.1 ensures the necessary and suffi-
cient condition for the Input/Output ports of [21] to be
used in the proposed asynchronous wrapper, improv-
ing it and making it more robust. As an illustration of
the Map_Dir_XBM method, let us apply it on the input
port, as follows.

As first and second steps of the methodology,
one must replace each XBM state (see Fig 20) by a con-
trol cell (Fig. 18).

In the third step, one must perform the connec-
tions based on the handshaking protocol between con-
trol cells, in this case, the Request signals (see Fig. 21).

The fourth step performs the connections based
on the handshaking protocol between control cells, in
this case, the Acknowledge signal (see Fig. 22).

The fifth step of methodology extracts the
Boolean equations of the CL blocks (see Fig. 22). For
each one of the CLs there is a sum of product equation,
where the product is the burst input of the state transi-
tion that focuses on the CL state.

The step six is not applied in this project.
The seventh step extracts the output Boolean

equations for Fig. 22. The output logic is implemented
in standard RS architecture, where the inputs are Ro’s.
Figure 23 shows the logic circuit of the input port.

 Figure 24 shows the logic circuit of the output
port synthesized by the Map_Dir_XBM method.

Cell-4
Ri

AoAi

Ro

Cell-0
Ri

AoAi

RoCL
Inputs

Cell-1
Ri

AoAi

RoCL
Inputs

Cell-2
Ri

AoAi

RoCL
Inputs

Cell-3
Ri

AoAi

RoCL
Inputs

Cell-5
Ri

AoAi

RoCL
Inputs

Cell-6
Ri

AoAi

RoCL
Inputs

Cell-7
Ri

AoAi

Ro

CL
Inputs

CL
Inputs

 Figure 20. Net of cells: first and second steps.

Design of an Improved and Robust Asynchronous Wrapper (AW) for FPGA Applications
Oliveira, Faria & Lussari

61Journal of Integrated Circuits and Systems 2013; v.8 / n.1:54-63

Cell-1
Ri

AoAi
Ro

Cell-2
Ri

AoAi
Ro

Cell-3
Ri

AoAi
Ro

Cell-4
Ri

AoAi
Ro

Cell-5
Ri

AoAi
Ro

Cell-6
Ri

AoAi

Ro

Cell-7
Ri

AoAi
Ro

Cell-8
Ri

AoAi
Ro

Reset

En_D

En_D

AT

A_CL
K

A_CLK

AT

A_CLK

AT

A_CLK

ATRo-1

Ro-2

Ro-3

Ro-4

Ro-8

Ro-7

Ro-6

Ro-5

RT

R_CLK

R0-6

R0-2

R0-1

R0-5

R0-8

R0-4

R0-7

R0-3

Cell-0
Ri

AoAi

Ro

En_D

Figure 24. Logic circuit: Input Port (seventh step).

VI. sIMulAtIon results & Further
dIscussIons

Firstly, it is important to list the advantages of
the GALS systems: a) reuse of previously design IPs; b)
the IPs work on their original frequency; c) use of stan-
dard synchronous tools for the design and verification
of new IPs; d) dramatic reduction in the timing analysis
efforts; e) reduction in electromagnetic interference; f)
potential power reduction; and g) elimination of the
clock skew issue.

This list of advantages of GALS system leads to
a conclusion that GALS design can meet a relevant role
in the future of digital design, but a major drawback to
this potential use is the asynchronous interface, espe-
cially when implemented in FPGA.

Focusing on this kind of applications, this paper
presented an asynchronous hazard-free oriented inter-
face for FPGA implementations, which shows to be ro-
bust to any kind of mapping. When a XBM controller
is EHF, being implemented in the architecture of Fig.
16, we say that it satisfies the “delay insensitive” model
(DI) [6] and interacts with the environment in Ib/Ob
mode. This delay model does not need to insert any
element of delay or meet the requirements of isochronic
fork. It was not found in literature any work presenting
an interface with similar properties.

During the previous sections, it was shown the
detailed design of ports and PCG of a new asynchro-
nous GALS wrapper architecture, in order to be im-
plemented in FPGAs. These designed structures were
simulated in Quartus II version 9.0 of ALTERA, fam-
ily Cyclone III, in the device EP3C40F780C6 [31].
Figure 25 shows the simulation result of the proposed
asynchronous wrapper, which satisfies the XBM specifi-
cations. It required 58 LUTS with 14ns of latency time.

Cell-4
Ri

AoAi

Ro

Cell-0
Ri

AoAi

RoCL
Inputs

Cell-1
Ri

AoAi

RoCL
Inputs

Cell-2
Ri

AoAi

RoCL
Inputs

Cell-3
Ri

AoAi

RoCL
Inputs

Cell-5
Ri

AoAi

RoCL
Inputs

Cell-6
Ri

AoAi

RoCL
Inputs

Cell-7
Ri

AoAi

RoCL
Inputs

CL
Inputs

 Figure 21. Net of cells: third step.

Cell-4
Ri

AoAi

Ro

Cell-0
Ri

AoAi

RoCL
Inputs

Cell-1
Ri

AoAi

RoCL
Inputs

Cell-2
Ri

AoAi

RoCL
Inputs

Cell-3
Ri

AoAi

RoCL
Inputs

Cell-5
Ri

AoAi

RoCL
Inputs

Cell-6
Ri

AoAi

RoCL
Inputs

Cell-7
Ri

AoAi

RoCL
Inputs

CL
Inputs

 Figure 22. Net of cells: Input Port (fourth step).

Cell-0
Ri

AoAi
Ro

Cell-1
Ri

AoAi
Ro

Cell-2
Ri

AoAi
Ro

Cell-3
Ri

AoAi
Ro Cell-4

Ri
AoAi
Ro

Cell-5
Ri

AoAi
Ro

Cell-6
Ri

AoAi
Ro

Cell-7
Ri

AoAi
Ro

Reset

En_D

RR

RR

A_CLK

A_CLK

RR

A_CLK

En_D

RR

A_CLK

RRRo-0

Ro-1

Ro-2

Ro-3

Ro-7

Ro-6

Ro-5

Ro-4

AR

R_CLK
R0-3

R0-7

R0-7

R0-3

R0-5

R0-1

R0-6

R0-2

Figure 23. Logic circuit: Input Port (seventh step).

Design of an Improved and Robust Asynchronous Wrapper (AW) for FPGA Applications
Oliveira, Faria & Lussari

62 Journal of Integrated Circuits and Systems 2013; v.8 / n.1:54-63

Figure 25. Simulation of asynchronous wrapper.

Figure 26 shows the simulation of the proposed
PCG, showing the stopping and starting of the clock.
Figure 27 shows the results of the three PCGs, involv-
ing six parameters. The delay elements inserted in the
three PCGs are equal. Comparing the proposed PCG
with the PCGs presented in [22,27], our proposal pres-
ents a reduction in three of these parameters.

Figure 26. Simulation: PCG.

PCGs

Figure 7

Figure 8

Figure 12

Nu. of
LUTS

Power
consumed

Time
of cycle

Start time
of clock

Stop time
of clock

Time
ReqàAck

9,4ns

8,3ns

7,3ns

6,5ns 3,5ns

2,4ns

106,7mw

106,8mw

11

5

8106,8mw5,3ns8,5ns6,3ns

8,3ns

7,2ns

7,9ns

Figure 27. Results: PCG’s parameters.

VII. conclusIon

GALS systems implemented in FPGAs showed
to be an interesting design style. Through the results
of this work, it was possible to discuss typical problems
concerning to asynchronous interface design, dedicated
for FPGAs, especially with the asynchronous wrapper.
It was proposed a new architecture to an asynchro-
nous wrapper that is able to overcome the previously
discussed drawbacks, showing to be a good option
for those designers who need to implement GALS in
FPGA. In this context the proposed architecture (con-
trollers) showed to be essential-hazard-free, not need-
ing any special cares in implementation concerning to
LUTs choice and being fully compatible with FPGA.

As additional advantages of the proposed architecture
we showed: total autonomy that synchronous modules
achieve when interacting with the asynchronous wrap-
per; ports can be synthesized in the direct mapping
style (so without knowledge of asynchronous logic syn-
thesis); and ports interact with environment in Ib/Ob
Mode, not needing a timing analysis. Simulation results
showed to be correct, agreeing to the expected ones and
proving the high potentialities of the new structures
proposed. Finally, it was presented the logic and essen-
tial-hazard free synthesis of input/output ports. Future
works lead to a robust asynchronous interface for FPGA
GALS implementation, involving FIFO.

reFerences

[1] G. DE Micheli, “An Outlook on Design Technologies for Future
Integrated Systems,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 28, no.6, pp. 777-789, June 2009.

[2] K. D. Muller-Glaser, et. al. “Multiparadigm Modeling in
Embedded Systems Design”, IEEE Trans. on Control Systems
Technology, vol. 12, no. 2, March 2004.

[3] A. J. Martin and M. Nystrom, “Asynchronous Techniques for
System-on-Chip Design,” Proc. of the IEEE, vol.94, no. 6,
pp.1089-1120, June 2006.

[1] J. J. Rodriguez, et. Al., “Features, Design Tools, and
Applications Domains of FPGAs”, IEEE Trans. on Industrial
Electronics, vol. 54, No. 4, pp.1810-1823, August 2007.

[2] P. P. Czapski and A. Sluzek, “A Survey on System-Level
Techniques for Power Reduction in Field Programmable Gate
Array (FPGA)-Based Devices”, The Second Int. Conf. on
Sensor Technologies and Applications, pp.319-327, 2008.

[3] C. J., Myers, “Asynchronous Circuit Design”, Wiley & Sons,
Inc., 2004, 2a edition.

[4] W. Hardt, et. al., “Architecture Level Optimization for
Asynchronous IPs”, Proc. 13th Annual IEEE Int. Conf. ASIC/
SOC, pp.158-162, 2000.

[5] M. Tranchero and L. M. Ryneri, “Implementation of Self-
Timed Circuits onto FPGAs Using Commercial Tools”, 11th
Euromicro Conf. on Digital System Design Architectures,
Methods and Tools, pp.373-380, 2008.

[6] N. Huot, et. al., “FPGA architecture for multi-style asynchro-
nous logic,” Proc. of the Design, Automation and Test in
Europe Conference and Exhibition, pp. 32-33, 2005.

[7] D. M. Chapiro, Globally-Asynchronous Locally-Synchronous
Systems, PhD thesis, Stanford University, October 1984.

[8] D. S. Bormann and P. Y. K., “Asynchronous Wrappers for
Heterogeneous Systems,” Proc. Int. Conf. Computer Design
(ICCD), pp.307-314, October 1997.

[9] P. Techan, M. Greenstreet, and G. Lemieux, “A Survey and
Taxonomy of GALS Design Styles,” IEEE Design & Test of
Computers, vol. 24, pp.418-428, September-October 2007.

[10] F. K. Gurkaynak, et al., “GALS at ETH Zurich: Success or
Failure ?,” , Proc. 12th IEEE Int. Symposium on Asynchronous
Circuits and Systems, pp. 150-159, 2006.

[11] M. Krstic´, et al., “Globally Asynchronous, Locally Synchronous
Circuits: Overview and Outlook,” IEEE Design & Test of
Computers, vol. 24, pp. 430-441, September-October 2007.

[12] A. Kumala, et al., “Reliable GALS Implementation of MPEG-
4 Encoder with Mixed Clock FIFO on Standard FPGA,” Int.

Design of an Improved and Robust Asynchronous Wrapper (AW) for FPGA Applications
Oliveira, Faria & Lussari

63Journal of Integrated Circuits and Systems 2013; v.8 / n.1:54-63

[21] D. L. Oliveira, et al. “A New Memory Element for Synthesis
by Direct Mapping of Asynchronous FSMs from XBM
Specification,” Proc. XIII SIGE, SJC, Brazil, 2011.

[22] K. Y. Yun and D. L. Dill, “Automatic Synthesis of Extended
Burst-Mode Circuits: Part I (Specification and Hazard-Free
Implementation) and Part II (Automatic Synthesis),” IEEE
Trans. on CAD of Integrated Circuit and Systems, vol. 18:2,
February, pp. 101-132, 1999.

[23] R. M. Fuhrer, et al., “Minimalist: An environment for the
Synthesis, verification and testability of burst-mode ma-
chines,” Technical Report, Columbia University, TR-
CUCS-020-99, 1999.

[24] R. Gagné, J. Belzile, and C. Thibeaut, “Asynchronous
Component Implementation Methodology for GALS Design
in FPGAs,” Proc. IEEE Conf. NEWCAS-TAISA, pp.1-4, 2009.

[25] S. H. Unger, “Hazards and Delays in Asynchronous Sequential
Switching Circuits,” IRE Trans. on Circuits Theory, vol. 6,
pp.12-25, March, 1959.

[26] D. L. Oliveira, et al., “Burst-Mode Asynchronous Controllers
on FPGA,” Int. Journal of Reconfigurable Computing, vol.
2008, pp.1-9, 2008.

[27] S. M. Nowick, “Automatic synthesis of burst-mode asyn-
chronous controllers,” Ph.D. Thesis, Technical report CSL-
TR-95-686, 1995.

[28] Altera Corporation, 2011, www.altera.com.

Conf. on Field Programmable Logic and Application, pp. 1-6,
2006.

[13] X. Jia and R. Vemuri, “Using GALS Architecture to Reduce
the Impact of Long Wire Delay on FPGA Performance,” Proc.
IEEE ASP-DAC, pp. 1260-1263, 2005.

[14] M. Najibi, et al., “Prototyping Globally Asynchronous Locally
Synchronous Circuits on Commercial Synchronous FPGAs,”
Proc. IEEE 16th RSP, pp.63-69, 2005.

[15] E. Amini, M. Najibi and H. Pedram, ”Globally Asynchronous
Locally Synchronous Wrapper Circuit based on Clock Gating,”
Proc. Emerging VLSI Technologies and Architectures,
pp.193-199, 2006.

[16] E. Amini, et. al., “FPGA Implementation of Gated Clock
based Globally Asynchronous Locally Synchronous Wrapper
Circuits,” Proc. IEEE Int. Symposium Systems, Circuits and
Signal, pp. 1-4, 2007.

[17] H. A. Farouk, M. T. El-Hadidi, “Implementing Globally
Asynchronous Locally Synchronous Processor Pipeline
on Commercial Synchronous FPGAs,” Proc. IEEE 17th
International Conference on Telecommunications, pp.989-
994, 2009.

[18] J. Muttersbach, T. Villiger, and W. Fichtner, “Practical Design
of Globally-asynchronous Locally-synchronous System,”
Proc. IEEE 6th Int. Symposium Advanced Research in
Asynchronous Circuits and Systems, pp.52-59, 2000.

[19] J. Pontes, et al., “SCAFFI: an Intrachip FPGA asynchronous
interface based on hard macros,” 25th Int. Conf. on Computer
Design, pp.541-546, 2007.

[20] A. R. Ravi, “Globally-Asynchronous, Locally-Synchronous
Wrapper Configurations for Point-to-Point and Multi-Point
Data Communications,” Master of science, University of
Central Florida, 2001.

