
I Student Forum on Microelectronics 1

An Hierarchical Schematic Editor to WWW

Lisane B. de Brisolara, Leandro S. Indrusiak, Ricardo A. da Luz Reis
{lisane,lsi,reis}@inf.ufrgs.br

Universidade Federal do Rio Grande do Sul – UFRGS
Cx Postal 15064 – Av. Bento Gonçalves, 9500 – Campus do Vale – Bloco IV

Bairro Agronomia – Porto Alegre – RS – Brasil – 91501-970

Abstract

This paper presents the research and development of a hierarchical diagram
editor, called BLADE (Block and Diagram Editor), accessible over internet-like
networks and included into the Cave2 Framework [IND 98]. This tool will be
used as a graphical interface between the user and the design environment,
providing a visualization of the design in different abstraction levels hierarchies.
This work also shows a new approach for the data structures behind the diagram
editor, based in a separation between design data and visualization data.

1 Introduction

A schematic editor is a tool mainly used during the design of a VLSI system for system
specification. The approach based in schematic capture was widely adopted by IC designers.
However, nowadays designers are using HDLs (Hardware Description Language) or other
high level approaches to specify a complex design [KUR 97]. There is a strong tendency that
the circuit specification, which nowadays occurs in HDL in textual mode, will should be able
to be done graphically. This tendency shows the possibility of utilization of a new kind of
schematic edition tools, the diagram editor, in complex IC design. The diagram editor can be
considered as an extended schematic editor that can handle different kind of diagrams and
abstraction levels.

In the specification of a complex system it must be used the an hierarchical approach of
functional blocks. This blocks can be seen as boxes that can be specified in a higher or lower
abstraction level depending on the its complexity degree. A hierarchical diagram editor can
allow a graphical description of complex system using functional blocks. Then, these blocks
are described in a logic level or RTL level. In the current frameworks, the schematic editor
main function is visualization. It allows a hierarchical view of a complex circuit lets a
graphical vision of a circuit in different abstraction levels or using different graphical/textual
representations. A schematic editor can supply a visualization of a circuit generated by
synthesis tools. This graphical vision allows a control of the design flow, allowing the
visualization of each refinement done during the design process.

Nowadays, system-on-chip designs are composed by custom blocks and by IPs
(intellectual property), allowing the design of complex systems in a short time. The use of
diagram editors in the design of systems using IPs is a necessity [BER 00]. This tendency is

2 I Student Forum on Microelectronics

one more motivation for research and development of new schematic editors that can handle
different abstraction levels and its graphical views, facilitating the integration among them.

The BLADE (Block and Diagram Editor) tool is a diagram editor to be inserted in
CAVE environment to allow the construction of the diagram representation of complex IC
allowing visual specification. CAVE is an IC design framework based in World Wide Web.
Its main objective is to integrate CAD tools and to automate a distributed IC design flow
[IND 98]. In CAVE project, it is also being researched the insertion of functions for
collaborative work, using JINI and JavaSpaces [SAW 01] [HER 01]. Blade is under
development considering the specification of CAVE’s data persistence and collaboration
services. The Java language is being used in BLADE development. Some advantages on
using Java are platform independence and applications integration facility in WWW, because
the applications are developed as applets to be integrated to hyperdocuments and visualized
with web browsers.

2 Schematic Editor Functions and Requisitions

A diagram editor allows a diagram construction using graphical basic primitives, as
rectangle, circle, lines, etc. This kind of editor must have features like zoom, rotation and
must allow global variable definition by the user such as colors, grid, etc. These features also
must be implemented in a schematic editor.

A schematic editor usually allows the circuits edition in logic level, using logic gates
stored in libraries or using functional blocks associated to hierarchical principle. Such tool
works with some basic primitives as logic gates, connections, blocks, ports, etc. These basic
primitives can be inserted, moved and removed in to/from schematic as in other kinds of
diagram editors. However, there are some particularity related to this kind of diagram editor.
The connections in a diagram must be strongly linked to every component, to make sure that
when a component is moved, every linked connections to it will be also moved to insures
schematic consistency.

After insertion and interconnection of blocks, it must be defined the correspondent
semantics of each block in different abstraction levels.

When the graphical specification of a design is done, a netlist description must be
generated in a default format order to be used in others tools, for example the EDIF
(Electronic Design Interchange Format) format.

3 Blade Development
The first step on the development of Blade was the definition of its underlying software

architecture, through the definition of a set of object classes. An important design decision
was the division of the diagram data in two main classes hierarchies: design data and
visualization data. The first, represent the needed data to generate the netlist descriptions and
reference the application's specific data. The second, represent the data used to generate
diagram views. This approach has as main objective to allow editor remote operation and the
insertion of collaborative work which represent the one of the features of the CAVE Project.
This practice is very used in software engineering because it allows the reusability and
facilitates system maintenance and understanding.

I Student Forum on Microelectronics 3

This approach is to allow collective classes relations without losing reusability. Several
toolkits used to construct of user graphical interfaces separate the interface presentation
aspects from the application data. Then, the classes that define application and representation
data can be re-used independently [GAM 00]. The separation of visualization and design data
allows the modeling of graphical representation and functionality representation through
different objects to allow different visualizations by different designers.

Figure 1 - Blade classes hierarchy.

In the CAVE environment, other graphical editors were already implemented using
Java, such as JALE/JALE3D [GRA 99] [OST 01]. Some of the building blocks of the Cave
Framework were modified to allow the development of this diagram editor tool. Classes from
JALE are used, specially those which define graphical functions and data structures of layout
editor, minimizing BLADE’s developing time. The figure 1 presents the BLADE´s main
classes. The CaveVisualObject class is utilized in JALE tool and was modified to be used in
BLADE. This class extends java.awt.Rectangle to every derived objects circumscribed in
rectangle area, turning consistent these objects. There are methods responsible for drawing,
rotation, selection, adjust of envelop and other functions to allow diagram edition and
visualization in CaveVisualObject class. Every edition operation occur through the
CaveVisualObject objects and this objects makes the interface between users and
CaveDesignObject objects. The CaveDesignObject’s sub-classes stores information
associated to circuit functionality, as gates, blocks and connections that compose the circuit
design, as such as information associated to blocks functionality. There is an association
between CaveDesignObject and CaveVisualObject that let to work with several views of a
design. A CaveDesignObject object can be composed of some CaveDesignObject objects,
this relationship gives the possibility to work in a design with different abstraction levels and
hierarchy. The CaveDesignObjectWithPorts objects has one or more CaveDesignObjectPort
objects, turning possible to work with functional blocks and logic gates with variable ports
number. CaveDesignConection object is composed of interconnections between

4 I Student Forum on Microelectronics

CaveDesignPort objects. This is the structure under the BLADE tool which will be able to
connect objects graphically and to generate a description netlist of diagrams and to manage
the use of different views and abstraction levels in a design.

4 Conclusions
This paper presented a brief report on the research and development of an extended

schematic editor called BLADE (Block and Diagram Editor). This diagram editor allows
hierarchical schematic edition and visualization, and the extension of those representations to
others abstractions levels. The main advantages offered by this tool is platform
independence, collaborative work and the use of remote operation.

An object-oriented approach and software design patterns are being used in BLADE
development, which allow the reusability of classes and code. It is used an approach to allow
the separation of design semantic and its graphical representation and making easier the
insertion of collaborative work.

Firstly, the BLADE tool will work with logic gate schematics, but the objective is to
generate a generic diagram editor tool which can be extensible to handle other diagrams,
representing different levels of abstraction.

5 References

[BER 00] BERGAMASCHI, R. A. & LEE, W. R. Designing System-on-Chip Using Cores.
In: Design Automation Conference, 37th. Los Angeles, California, 2000.

[GAM 00] GAMMA, E. et al. Padrões de Projeto: Soluções Reutilizáveis de Software
Orientado a Objetos. Bookman, Porto Alegre, 2000.

[GRA 99] GRALEWSKI, D.; WINCKLER, M.A.A.; INDRUSIAK, L.S; REIS, R.A.L.
JALE Layout Editor. In: Proceedings of the XIV Microeletronics Seminar. July.
09 -10, 1999, p. 51-54.

[HER 01] HERNANDEZ, E.; SAWICKI, S.; INDRUSIAK, L.; REIS, R. Homero – Um
Editor VHDL Cooperativo via Web. In: Workshop Iberchip, VII. Montevideo,
Uruguay, March-2001.

[IND 98] INDRUSIAK, L & REIS, R. Ambiente de Apoio ao projeto de Circuitos
Integrados baseado na World Wide Web. Master Thesis. UFRGS, Porto Alegre,
1998.

[KUR 97]KURUP, P. & ABBASI, S. Logic Synthesis using Synopsys. Kluwer Publishers,
1997.

[OST 01] OST, L.C.; MAINARDI, M.; INDRUSIAK, L.S.; REIS, R.A.L. Jale3D -
Platform-independent IC/MEMS Layout Edition Tool. In: XIV SYMPOSIUM
ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 14., 2001,
Pirenopolis. Proceedings... Los Alamitos: IEEE Computer Society Press, 2001. (to
appear)

[SAW 01] SAWICKI, S.; REIS, R. Uma Proposta de Trabalho Cooperativo baseado em
Web para Concepção de Circuitos Integrados. In: Semana Acadêmica. UFRGS,
April, 2001.

