
A CAD tool for Automatic Core Inter face Generation in a SoPC Environment

Julio A. de Oliviera Filho, Manoel E. de Lima
Centro de Informática, Universidade Federal de Pernambuco

jaof@cin.ufpe.br, mel@cin.ufpe.br

Abstract

System on a Programmable Chip (SoPC) has become a
reality, facing design of complex circuits into a single
programmable device, supporting different cores for
microprocessors, interface, bus, etc. However, the
automatic inclusion of new general cores from different
providers via a standard bus still needs a reliable
interface mechanism to guarantee the correct protocol
conversion and performance. This work presents a CAD
tool methodology to cope this problem based on a Petri
Net protocol conversion approach in a high level
behavioral specification, focusing on bus planning and
core integration.

1. Introduction

Chip gate count fast increasing has led to entire
systems being implemented on a single die (SoPC), and
so, design complexity has grown proportionally making
difficult to achieve short time-to-market needs. To cope
such problems, emergent technology methodologies and
CAD tools emphasizing system-level synthesis and
reusability have been proposed, forcing fundamental
changes in the way systems are designed.

Reusability approach is mainly based on the use of
pre-designed IP blocks(henceforth called cores) and has
become essential in order to build the required
complexity in a short time-to-market. However, in
practice, the task of quickly assembling an SoPC has not
yet become reality for various reasons, including:
• Lack of efficient tools for core integration into SoPC.
Nowadays, core integration on SoPC design is mainly a
manual and error-prone activity, forcing designers to deal
directly with functionality, interfaces and electrical
characteristics of complex and custom cores.
• Physical design complexity. Putting cores together
can be a challenging task as unforeseen effects such as
noise and coupled capacities can affect performance.
• Design for reusability should be concerned to
integrate IPs from different vendors, but there are no
established standards or efficient interface synthesis
tools. Moreover, various interface issues, e.g. timing,
may cause systems to fail even if the cores are
individually correct.

• Interface between hardware and software affects
directly time-to-market because, in major design
frameworks, the integration among those is done later
when hardware part is more stable.

Some groups efforts, like VSI Alliance[1] are oriented
towards facilitating integration of cores through
standardization. SoPC bus standards, such as
AMBA[13], WishBone[14] and AVALON[12] are as
well arising in market to ease core interchange and
reuse. However, integration task today is a complex
process because it requires the designer to understand
details in hundred of pins in various cores and
generating correct additional logic for their
interconnection. While design methodologies migrate to
system-level algorithmic and architectural bases and
hardware-software co-design technologies, it is
imperative to build tools focused on bus planning and
block integration [2].

This work addresses the implementation of a CAD
tool methodology for core interface automatic generation
and core integration in a SoPC design, based on a Petri
Net approach. From the description of timing diagrams,
bus specification, pins functionality and some system
information it is possible to automatically synthesize
adequate interface process circuit. Related works are
presented in the section 2. Section 3 explains main
streams of the framework and the Section 4 discusses
some initial conclusions.

2. Related Work

Several research efforts treat interface automatic
generation as transducers synthesis. It is indeed an
efficient approach, however, simple protocol conversion
on transducers circuit hardly addresses system level
information like type conversion and data width
matching.

Daniel D. Gajski[3] proposes a method for generating
interface process based on HDL description of two
communicating protocols. HDL descriptions, however,
makes difficult to estimate circuit issues (like area and
power) and formally verify process functionality.

Cortadella[4] et. al. uses a formal theory and
mathematical model based on a Petri Net for interface
specification. In his work, techniques for synthesis,

analysis and formal verification are being largely studied
and can lead interface process generation task through an
asynchronous circuit design approach. Bill Lin[5]
addresses automatic protocol conversion and
Passerone[8] proposes interface process construction
through a state machine approach.

Other works analyze core integration into system
level. Bergamaschi[6] discusses relevant info from
system specification that should be available during core
integration task. The same is extensively discussed by
Henry Chang et. al.[2] while proposing a methodology
for SoPC design based on reusability and standardization.
Both works show how this problem is being addressed in
strong market groups like IBM[7] and VSI Alliance[1].
None of these works, however, unify interface automatic
generation and system-level information into a core
integration-driven SoPC design framework.

3. CAD Tool M ethodology

Core interface protocols are typically documented as
some sort of timing diagrams in data sheets and technical
manuals. For this reason a slightly different type of
timing diagram, called Signal Transition Graph (STG),
is used as the input for the proposed CAD tool. This type
of annotated timing diagram was introduced by Chu[9]
and is equivalent to a free-choice Petri Net model, where
transitions represent rising and falling signal edges as
well as data assertion/de-assertion. Unlike timing
diagrams, STGs may express choice and non-
determinism in a concurrent view. Figure 1 depicts a
two phase writing operation described as an STG and its
equivalent Petri Net graph. In the figure, data
assertion(de-assertion) is represented as D#
(D*), a signal name followed by +(-) means
rising(falling) transition on that signal and the input
signals are underlined. After data assertion, a strobe
signal is enabled to pulse and data can be de-asserted so
forth.

Figure 1. – STG

Based on this approach, the Figure 2 shows the CAD
tool design flow for interconnecting two different
modules interface protocol. In the graphic, the
destination module has a two phase protocol interface(2a)
while the source one uses a four phase protocol(2b) and
so, a direct connection between the two entities is not
possible. From system specification the designer can
build an STG describing only the necessary
communication tasks, as removing unnecessary
operations leads to power and area saving. A STG for
each communicating module is provided.

Figure 2 – CAD Tool workflow

The CAD tool accepts STGs as inputs and

automatically translate them into Petri Net notations(2c).

The Petri Nets can then be adequately manipulated to
systematically introduce information available from high-
level specification. Examples for those information are
sequences of data transfers, data ports interconnection,
address decoding and data-width mismatches. These
aspects are introduced through sequential
transformations on Petri Net structure.

Once the Petri Nets describing interface protocols plus
system information are ready for both modules, they are
joined into one unique net in a two step stage. Initially a
each Petri Net of each protocol is mirrored. A mirror
operation consists in re-building the same net but making
input(output) signals as outputs(inputs). After that, the
protocols are then joined through a parallel composition
operation[5] between the mirrored nets. The composed
single graph represents the interface process between the
two communicating modules as depicted in figure (2d).
Figure 3 shows a mirror operation example.

Figure 3 – MIRROR Operation

The generated Petri Net representation is then pre-

processed to ensure that some required properties, such
as boundedness, consistency, persistency and
completeness, are verified. Boundedness is used to
guarantee a finite state graph for the Petri Nets.
Consistency is applied to make sure every rising(falling)
transition on a signal is alternated. Completeness
ensures there are no states with the same encoding and
different behavior on output, and finally, persistency
avoids logic hazards during circuit operation. Other
properties can be of interest as well, e.g., absence of
deadlocks and fairness. These properties are important
to garantee an harzard free implementation of the circuit.
If the above properties are satisfied, then the specification
can be implemented as a speed-independent circuit [4].

The resulting Petri Net is then translated into a
synthetisizable VHDL. The goal of circuit synthesis from
the Petri Net description, is to derive a gate netlist that
implements the interface behavior defined by the
specification. The VHDL component is generated by

attaching structurally the core code with the interface
process. The new component is then ready for plug-and-
play into the system. Figure 4 shows the conversion and
synthesis results.

Figure 4 – CAD Tool Result

 This method can be applied between any two

communicating modules using different protocols. In
this particular work, we intend to emphasize block
integration onto SoPC standard bus architecture, such as
AVALON and AMBA, wide spread architectures in
processor/peripheral and bus-driven systems.

4. Conclusions

The CAD tool methodology proposal for automatic
core interface generation is being implemented as a plug-
in for the Alterá s SOPC Builder[10] in the Quartus
II[11] management environment. A real case study is
under development. The methodology aims at core
integration into design by automatic protocol match
between core and bus in a system level specification.
The CAD tool will be able to gather information from the
system specification and systematically introduce it into
interface process generation based on a Petri Net
approach.

5. References

[1] VSI Alliance Architecture Document, Version 1.0,
VSI Alliance, 1997.
[2] H. Chang et. al., Surviving the SoC Revolution – A
Guide to Plataform Based Design, Kluwer Academic
Publishers, 1999.
[3] D.D.Gajski and S. Narayan, Interfacing Incompatible
Protocols using Interface Process Generation, 32nd
ACM/IEEE Design Automation Conference, 1995
[4] J.Cortadella, M.Kishinevsky, et. al., Hardware and
Petri Nets: Application to Asynchronous Circuit Design,

21st International Conference on Application and Theory
of Petri Nets, 2000.
[5] G. G. Jong , B. Lin, A Communicating Petri Net
Model for the Design of Concurrent Asynchronous
Modules, 31st ACM/IEEE Design Automatic
Conference, 1994.
[6] RA.Bergamaschi,WR.Lee,Designing Systems on Chip
using Cores, DAC2000, LosAngeles,CA.
[7] Blue Logic Technology, IBM.
[8] R. Passerone, J.A. Rowson, Automatic Synthesis of
Interfaces between Incompatible Protocol., DAC98, San
Francisco,CA.
[9] T. Chu. Synthesis of Self-timed VLSI Circuits from
Graph Theoretic Specifications. PhD thesis, Department
of EECS, Massachusetts Institute of Technology,
September 1987.
[10] Altera Inc., SOPC Builder, version 2.0, January
2002.
[11] Altera Inc., QUARTUS II Manual,
http://www.altera.com
[12] Altera Inc., AVALON Bus Specification – Reference
Manual, version 2.0, January, 2002.
[13] ARM Inc., Amba 2.0 Specification,
http://www.arm.com
[14] Silicore Corporation, WISHBONE, Revision B.1
Specification, http://www.silicore.net/wishbone.htm

