AN ASSEMBLER PROGRAM FOR A 16 BIT SoC RISC PROCESSOR

Ryan M. D. Rangel; Juliana Z. F. Diniz; Ricardo R. Linder;, Geraldo M. Benicio Jr.; Adson F. da
Rocha; José C. da Costa

Universidade de Brasilia — Faculdade de Tecnologia — Departamento de Engenharia Elétrica
Campus Universitario Darcy Ribeiro — Caixa Postal 4386 — Brasilia — DF — 70919-970 — Brasil
e-mail: camargo@ene.unb.br

ABSTRACT

An assembler program was developed with success for a
16 bit SoC (System-on-Chip) RISC CMOS processor. It
was projected to manipulate an instruction set made by 16
micro-instructions and 44 pseudo-instructions. The
software Montador v.1.1 is able to perform automatic
syntax recognition and syntax error detection. The
execution time is reduced by the use of the C++ language
in implementation and the interface with the user is very
friendly, based on standard text editors.

1. INTRODUCTION

A SoC design containing a 16 bit RISC CMOS processor
has been developed [1]. Machine code and an assembly
language [2] were developed to explore the capabilities of
the processor.

In this study, an assembler program, the Montador —
v.1.1, was developed in the C++ programming language,
to translate the instructions from the assembly code (more
friendly to a human user) to machine code (binary —
which is the processor language). The program has the
ability to check the syntax typed by the user and to show
errors in syntax. Besides, the program was developed to
be a very useful IDE tool, providing standard text editor
facilities while keeping a compatibility with the Microsoft
Windows platform.

2. THE RISC PROCESSOR’S INSTRUCTION SET
2.1. Micro-instructions

This RISC processor has 16 micro-instructions. These
instructions have 16 bits of size, and are divided in:

a) Type R instructions: they use two registers as
operands storing the result in another register.

b) Type 1 instructions : these instructions make
comparison among two registers and are used for
conditional branches.

¢) Type J instructions : these instructions use a register
and a constant in their format. They are used for
unconditional jumps, shift operation and for the
boolean Not.

2.2. Pseudo-instructions

Those types of instructions are combinations of micro-
instructions, implemented in software that allow the
expansion of the instruction set from the original 16
micro-instructions to 60 (with the addition of 44 pseudo-
instructions). The complete pseudo-instructions set [2,4]
includes the micro-instructions, although in this case, the
pseudo is the proper micro-instruction.

3. THE ASSEMBLER PROGRAM

To construct the software Montador — v.1.1 the C++
language was selected because it’s a language that spends
a small time to compile and execute, and it is well
accepted in the Windows system, the platform chosen to
the use of this software. For a better development of
programs by the user, the interface (IDE) was constructed
as a text editor tool, with some facilities that can be found
in this environment. The assembly code must be finished
with the “END” statement. If that statement is not
included, the software will show an error message, in a
dialog box, and the translation process will be stopped. It
was used to provide an end of text indication to the C ++
text editor. After this test, the text lines will be interpreted,
one by one.

To interpret the assembly instructions, the method is
identifying them as micro or pseudo-instructions. The
micro-instructions will be treated according their format
(R, T or J). If no match was found, then the pseudo-
instructions algorithm is called. After the identification the
pseudo will be decomposed into the micro-instructions
that constitute it, and each one of them will be handled as
a simple micro-instruction (this algorithm is presented in
Fig.1.).

The comparison of entries and reference values is
made considering the assembly instructions typed by the
user as a vector of characters (string) and then tests are
made position by position using pointers as in Fig. 2..

Quitthe | MO Paeudo-
translation *~—— instruction?

rautine

|dentification of the micro-
instructions that compound the

pseudo
Treatmnent of Traatnent of Traatnent of
Type R Type | Type J
ticra- Micra- Micra-
instruction instruction instruction

/Ry
L/

| Hexadecimal code |

y

Does itthe
last micra from
this pseudn?

Mo

The translation of this
pseudo ends and the
translation algorithm goes
to the next teut line.

Fig.1 — Pseudo-instruction’s treatment algorithm.

Be an text vector like

[a]o]o] J$].]w] String 1
o123 4 12

and the reference values for the instructions....

[A[D][D] | Micro-instruction ADD
o123

[A]D]D] 1] Micro-instruction ADDI
o1 2 3

Fig. 2 — Comparison algorithm

In this example, the comparison is made until position 3,
where the strings of reference are distinct between them,
so the number of positions needed to be compared are
determined by the number of possibilities that exists for a
given character sequence. Each treatment routine tests the
existence of the registers and the instruction field sizes
typed by the user in the assembly commands, to increase
the security level in the conversion. If an error occurs, the
software identifies the line and shows the correspondent
error message. If no errors happened, after each line
translation, the generated hexadecimal code is written in
the file “file out.bin”, and after all lines have been
processed, the result will be showed to the user.

The assembler was developed and tested [3, 4] in the
Borland C++ Builder 5.0 tool, a PC with an Intel
PENTIUM" II 266Mhz processor, 64 MB of RAM
memory, color monitor with 1024x768 of screen
resolution and MS Windows 98® operational system.

4. CONCLUSIONS

An assembler software, with a reliable syntax analysis,
was developed with success. It presents all the easiness of
the common text editors andallows an easy code
development.

The algorithms and functions developed in this
software fulfilled the proposed specification. For future
versions of this assembler, some code can be encapsulated
creating new functions, and also reducing the code size.

A routine also could be added to identify the
registers which will have their contents modified after a
pseudo-instruction’s execution. That routine shall warn
the programmer about the situation.

A two step assembler can also be expanded from this
software, so it will be able to recognize LABELS and
commands of attribution as EQUATE (EQU) that can be
used to simplify the use of constants. The RISC processor
for which this assembler has been designed was
successfully simulated in VHDL and a FPGA
implementation was also carried out. In the future some
new features may be required and the assembler’s
structure shall allow those modifications without
difficulties.

5. REFERENCES

[1] G. M. Benicio Jr., Design of a 16-bit RISC Microprocessor
for a Wireless Communication System, Master’s thesis, Dept. of
Electrical Engineering, Univ. of Brasilia, Brasilia, Brazil, 2002
(in Portuguese).

[2] R. R. Linder, 4 Machine Language for a Processor in a SoC,
Master’s thesis, Dept. Electrical Engineering, Univ. of Brasilia,
Brasilia, Brazil, 2002 (in Portuguese).

[3] Diniz, Juliana Z.. Development of a Basic Application for a
wireless SoC. Electrical Engineering Graduation Final Project
Electrical Engineering Department , Univ. of Brasilia. Brasilia
DF, Brazil, 2002 (in Portuguese).

[4] Rangel, Ryan M. D.. Mobile Communication Application —
Development of an Assembler Software to a RISC 16-bits
processor. Electrical Engineering Graduation Final Project
Electrical Engineering Department , Univ. of Brasilia. Brasilia
DF, Brazil, 2002 (in Portuguese).

