
OPENCIF: A Fast Layout Viewer for VLSI Circuits

Rafael Araújo Rodrigues e Alessandro Girardi

Universidade da Região da Campanha – URCAMP
Campus Universitário de Alegrete

{ rafael.rodrigues, girardi} @al.urcamp.tche.br

Abstract

This paper presents OpenCIF, a fast layout viewer
for integrated circuits focused on high performance for
read and draw CIF (Caltech Intermediate Format)
descriptions containing millions of structures. The tool
was implemented using OpenGL graphics technology in
order to optimize graphics functions, providing real-
time layout navigation. Also, the objective of this work is
to make available a free tool for academic applications
providing good performance in personal computers.
Some comparison results with commercial tools are
presented.

1. Intr oduction

CAD tools for integrated circuits design are

fundamental nowadays, providing a wide set of tools in
order to automate or semi-automate analog and digital
design, which make possible to build million-transistors
chips in a few weeks or months. However, the price of
most commercial tools is prohibitive for educational
purposes, turning the use economically unviable for
most students.

This paper describes the development of a tool
capable to read CIF files and draw the equivalent layout,
providing to the user a graphical view for inspection on
screen. The main objective of the tool is to supply a fast
viewer for large circuits, capable of very fast print and
real-time layout navigation. Also, we aim to provide free
distribution for use in academia, friendly for even non-
expert users, with a smart interface on Win32 platform.

2. CIF str ucture example

The CIF is a means of describing graphical items

(mask features) of interest to VLSI (Very Large Scale of
Integration) circuit and system designers [MEA 80]. Its
purpose is to serve as a standard machine-readable
representation from which other forms can be
constructed for specific output devices such as plotters,
video displays and pattern-generation machines. This
type of textual description of integrated circuits became
world standard due to the possibility of integration in
different tools. The CIF is composed by a limited set of

graphics primitives that describes 2D shapes in different
layers of a chip, in text mode.

Fig. 1 shows a small example of CIF structure. The
CIF format has a hierarchical structure based on cells,
beginning with the DS command (definition start) (lines
3 and 11 in fig. 1) and ending with DF command (lines
10 and 20). Inside the cell there are layer assignments,
calls and primitive function commands. The start call
function is located at the end of the CIF file (line 21),
calling the topmost cell of the circuit.

The box commands (lines 6, 8, 9, 18 and 19) have
four parameters. This is the most used command in a
generic CIF description that uses Manhattan style. The
layer assignment is made by the command ‘ layer’ , lines
5, 7 and 17. Cell calls (lines 14 and 16) can have as
attributes the following transformations: translation,
rotation and mirroring, as can be seen in fig. 2.

Numeric functions are used for description aspects
of CIF structure. In the example of fig. 1, the command
‘9’ (lines 4 and 12) determines cell names, and the
command ‘91’ (lines 13 and 15) determines a call
instance named below it. Other shapes that can appear in
a CIF description are circle, polygon, path, etc.

3. The OpenCIF Render System

The strategy used is the classification of the boxes

based on a data structure suitable for the representation
of the points coordinates. This classification is
performed according to the exact position of the boxes
in relation to screen coordinates. The reading procedure
of a CIF file is performed sequentially, identifying
primitives and storing them in a first buffer. Using the
first buffer, the reading procedure identifies the initial
call for the first time CIF file is drawn and, at the same
time, draw on screen and store them in the second
buffer. At this moment, the circuit is plainified and the
exact positions of the cells are calculated. The memory
is dynamically allocated in order to optimize the
memory consumption without loss of performance. The
primitive shapes are stored in a second buffer based on a
Cartesian plan. For the layout redraw, the software
accesses the limits of screen visible coordinates and
redraws only the shapes in the buffer that are inside
these limits.

Fig. 1 – CIF description example

Fig. 2 Demonstration of transformation tasks from
parameters of the Call function.

The cell transformations are implemented by the

multiplication of shapes coordinates by canonicals
matrices. A point (x,y) given in the symbol is
transformed to a point (x’ ,y’) in the chip coordinate
system by a 3 x 3 transformation matrix T:

[x’ y’ 1] = [x y 1]T

The matrix T is itself the product of primitive

transformations specified in the call: T= T1 T2 T3, where
T1 is a primitive transformation matrix obtained from the
first transformation primitive given in the call, T2 from
the second, and T3 from the third (of course, there may
be fewer or more that three primitive transformations
specified in the call). These matrices are obtained using
templates for each kind of primitive transformation.

One of the great problems of manipulating
thousands of rectangles that compound an integrated
circuit is that it is not always necessary to draw all boxes
on the visible screen. To override this problem, the
picture drawn can be clipped, by proper setting of the
windows. OpenGL automatically clips off parts of
objects that lie outside the world window [HIL 01].
Also, objects whose width or length is less than one
pixel are not processed during the zoom action. These
procedures highly increase the overall performance of
redraw during the navigation across the layout. The
navigate commands are processed only by the OpenGL
API in the device context. Other necessary readings of

the planning buffer are performed just for layer
operations, such as color changes, layer hiding, or wired
and fil led view. The main feature for a good
performance for drawing function with OpenCif is its
pixel map setting inside OpenGL API, enabling double
buffer drawing, which provides extremely fast drawing
performance.

4. Compar ison results

In order to compare the performance of the

OpenCIF with other commercial equivalent tools, we
realized a test of read from disk and draw a complete
CIF file containing 1.474.073 boxes stored in 2,06MB of
disk space. The other tools analyzed were CleWin 3.1
Layout Editor, from WieWeb Software and LinkCAD
5.5.19 from Bay Technology, both for Windows. Fig. 3
shows the comparison results between the tools. Opencif
achieved the best time, reading and drawing the CIF file
in 4.38 seconds. LinkCAD obtained 5.22s and CleWin
15.39s. The test was realized in an Intel Celeron 2.4Ghz
with 256MB of RAM, running Windows XP
Professional.

0

2

4

6

8

10

12

14

16

T
im

e
to

 r
ea

d
 a

n
d

 d
ra

w
 (

s)

CleWin LinkCAD OpenCIF

Tool

Fig. 3 – Comparison graph between the time
required to open and draw a CIF file with 1.474.073

boxes
5. Conclusion

The first tests shows that OpenCif is a good tool,
which can compete in performance with commercial
softwares, although its focus is academic applications
and free distribution. Its main objective is to supply the
demand for free CIF layout viewers for Win32 platform

References

[MEA 80] Mead, C.; Conway, L.; Introduction to
VLSI Systems; Addisson-Wesley Publishing Company,
1980.

[HIL 01] Hill, F. S.; Computer Graphics Using
OpenGL; Prentice-Hall; 2nd edition; 2001.

