
Development of application routines for a System on Chip dedicated to
irrigation control

A. L. Silva, A.F. Rocha and J.C. da Costa

Departamento de Engenharia Elétrica, Universidade de Brasília, CP 4386, Brasília, DF 70904-970, Brazil

Abstract

A CMOS VLSI SoC (System on Chip), designed for

Irrigation Control Applications was developed for a
group of work. The SoC design allows wireless and serial
communication capability, data processing, sensor signal
acquisition and actuator control. All communication in
this SoC is made bit-to-bit reading/writing through the
interfaces, and the control time by software, because the
system do not possess a time counter. In this work, three
groups of the routines as well as the development of
dedicated communication protocols are presented.

1. Introduction

Our University, together with seven other institutions,
is developing a system to control irrigation on crops [1].
The system is composed by a base station, field stations
and nodes [2]. The field stations gather information from
the nodes through a wireless link, accurately identify
areas of moisture deficiency and send instructions to the
nodes, determining which ones should act on latch
solenoid valves, in order to deliver the required amount
of water to the plants. Each node is composed by a
CMOS 0.35µm [3] SoC (System on Chip), a tensiometer
with a solid state pressure sensor, an actuator which
controls the water flow through a solenoid valve, a solar
powered power supply, a RF antenna, and embedded
software. The SoC consists of a RISC microprocessor,
memories, a RF transceiver, digital interface and A/D
interface.

An assembly tool was implemented [4], which is
basically a two step assembler. It was made in such a way
that it is possible to change, add or delete the instructions
just by editing a text file.

This paper presents an overview of the three groups of
routines: Boot Application (firmware), initialization of
the system; Operational Application (RAM), control of
the system; and Functional Application (RAM), test of
the system. It also presents the protocols used for
communication.

2. Programming structure

The microprocessor proposed is based on RISC
architecture [5] and provides sixteen 16-bit registers,
which are showed in Table 1. Besides that, seven
memory positions are used as registers for
communication with RF and serial interfaces and with the
A/D converter.

The microprocessor, which follows a MIPS like
structure, has sixteen fixed length 16-bit instructions,
which are divided in four categories: arithmetic and
logic, data transfer, conditional branch and jump. These
instructions are showed in table 1.

Table 1: Microprocessor register and instructions

Registers Instructions
$zero, $t0, $t1, $t2, $a0,
$a1, $a2, $s0, $s1, $s2, $s3,
$s4, $gp, $sp, $pc, $ra

Add, Sub, Addi, Shift, And,
Or, Not, Xor, Slt, Lw, Sw,
Lui, Beq, Blt, J, Jal

Table 2: Interface addressing for communications

 U. RF U. Serial Int. A/D
Setup $0BFD - -
Status - - -

transmission $0BFC $0BFA -
reception $0BFB $0BF9 $0BF8/7

The register banks consist in 16 addressable registers

organized in the following way:
 $zero: the constant zero; $t0, $t1 and $t2: hold temporary
values; $a0, $a1 and $a2: argument registers; $s0, $s1, $s2,
$s3 and $s4: hold program variables; $gp: global pointer
register; $sp: stack pointer; $pc: program counter; $ra:
return address register.

3. Protocols and software

Two protocols had been elaborated for the design of
the communication in the system: one for Boot
Application, PBOOT, that describes the load of
instruction in RAM memory, and other, named MSNAP,
for Operational Applications and Functional
Applications, one level up in communication, Figure 1.

Figure 1: Protocol Layers.

The MSNAP protocol is the SNAP [7] protocol

modified for sixteen bits.
When the frame of data arrives in the physics layer,

the program Boot loads the packet in memory RAM, in
accordance with the rules PBOOT, Figure 2. After, the
Operational Software verifies the header MSNAP, it sees
Figure 3, and calculates the checksum. Case some error
be found, the packet is returned with one specific error

code. Otherwise, occur one jump for data field, and the
application is executed.

The first software developed for the SoC was the Boot
Application, which was recorded in the ROM. It was
designed with the help of the previously mentioned
assembler. It provides the routines for the initialization of
the processor, the control of the serial and the radio
frequency (RF) interfaces, and a program loader. Its
design complies with some hardware constraints such as
the fact that the serial and RF interfaces are bit-to-bit
reading/writing and do not possess a hardware for the
time counter. For that reason, the time is controlled by
delay loops.

When the SoC is turned-on the Boot Program is
executed. It sets interfaces, disables the interruptions and
establishes communication with serial and RF interfaces.
A simple protocol was developed for loading a complete
program to RAM. It has four fields: 1- the beginning
identification Code, 2- data field’s size, 3- the first
address of writing memory RAM, 4- data’s field, Figure
2.

Code

(16 bits)
NoBytes
(16 bits)

M.Position
(16 bits)

Data
 (16 bits)

Figure 2: Protocol PBOOT.

Operational Applications are routines responsible for
system’s operation. They are the equivalent to a
operating system for this rather simplified SoC
architecture. They control the system from the moment
that it is loaded in RAM memory. Besides of to
manipulate the header MSNAP, it controls the checksum
for transmission and reception of data, it identifies errors
and transmits one specific code in the field DBn, makes
the transmission by RF interface, among other things.

SYN HB1/HB2 DAB SAB DBn Chk

Figure 3: Protocol MSNAP, 16-bit-field.

The functional Applications are downloaded in the
memory RAM indicates by “Memory Position” of the
protocol PBOOT, and are executed for Operational
Application. One application that makes tests in all
functionalities of the system had been elaborated. It
captures data in interface analog/digital (pressure sensor),
makes eight samples and calculates the arithmetic media.
After, the fields in protocol are modified for
transmission, the data are stored in DBn field, the
checksum is calculated, and the packet is returned as
message reply.

4. Error detection

In the attempt of guarantee quality in the data for the

system, three algorithms of error detection had been
implemented: parity, checksum and check_eot. Parity and
check_eot are implemented in the Boot Program and
checksum in Operational Application.

Check_eot is the first algorithm of error detection in
the system. It’s related with the final of each byte load
from interface. The last bit of one byte is the “stop bit”,
in high level; after a sequence of zeros are waited. Then,
the routine does not stop reading at the stop bit, but, three
bits later. That four bit set is then compared to the 1000
binary sequence, in order to detect eventual faults. The
next step of error detection is even parity, a sequence of
bit-to-bit “exclusive-or” verifications for each byte.

After that the packet is loaded in RAM memory, the
algorithm of checksum is activated, verifying the entire
packet.

5. Conclusion

The three groups of routine were successfully

developed for the SoC. With the assembler tool, it was
gotten 498-bytes of code for Boot Application, 472-bytes
for Operational Application and 168-bytes for Functional
Application. The protocols had given to stability in the
communication, guaranteeing efficiency with simplicity.
The next steps are development of new applications for
de system and to make the best verification with the end
of the simulator of the system [6].

6. References

[1] J. D. Costa et all, “Projeto de Estruturas de um Processador
RISC para Aplicação em um SoC para Controle de Irrigação”,
Proceedings X Iberchip Workshop, Iberchip, Cartagena de
Indias, Colombia, 2004.

[2] J. D. Costa et all., “Modulo I.P. de um processador para
aplicações embarcadas sem fio”, Proceedings IX Iberchip
Workshop, Iberchip, Havana, Cuba, 2003.

[3] AMS (Austria Microsystems) 0.35 um CMOS, Model
C35B4C3, 4 metal levels, 2 poly levels, 3.3V-5V power supply
(http://www.austriamicrosystems.com/).

[4] L. Povoa, Master Thesis in Electrical Engineering,
University of Brasília to be presented in this year, Brazil,
University of Brasilia, Brazil.

[5] BENICIO, G. M., “Projeto de Microprocessador RISC 16-
Bit para Sistema de Comunicação sem fio” (dissertação de
mestrado em engenharia elétrica), Universidade de Brasília,
2002.

[6] A. J. O. Martins, Graduation’s Project, University of
Brasília, Brazil, 2005.

[7] SNAP Protocol, http://www.hth.com/snap/.

