
THE SUCCESSIVE REFINEMENT METHODOLOGY IN THE EMBEDDED SYSTEMS 
DESIGN

Sandro Renato Dias, Diógenes Cecílio da Silva Júnior
Departamento de Engenharia Elétrica – Universidade Federal de Minas Gerais, Brazil 

{sandrord, diogenes}@cpdee.ufmg.br 

ABSTRACT

The methodology of successive refinement is becoming a 
strong point in the project of embedded systems. Here we will 
present the methodology and to propose a refinement model, 
defining levels and refinement rules to each level, enabling to 
the designer to develop his projects with more agility and 
possibility of verification and simulation all moment. 

1. INTRODUCTION 

The use of the Successive Refinement Methodology is crescent 
and several languages, methodologies and tools were developed 
or were adapted to facilitate the use of this methodology. Its 
main aim is to work with different abstraction levels to facilitate 
and speed the design development. It is possible with the use of 
hardware description languages based on C/C++ (such as 
SystemC), since they facilitate the hardware-software co-
design, i.e., the development of the software without a finished 
physical stable hardware, before the end of the project.  

Usually 50% of the debugging time is spent with the 
specification incorrectly translated or ambiguous, such 
problems are easily solved using refinements since the designer 
can use the same language from the specification to the 
synthesis level. This work aims to propose a model of 
refinement with rules to define the levels.

2. SUCCESSIVE REFINEMENT METHODOLOGY 

Abstraction is a powerful technique for the design and 
implementation of complex hardware systems. It allows us to 
deal with the complexity of the system hiding unnecessary 
details until later use. The different quantity of details means 
different levels of abstraction, Müller, Rosenstiel and Ruf [1]. 
The semantics of the modeling based on the abstraction is well 
described by Gerstlauer and Gajski [2], where they demonstrate 
the importance and advantages of its use. Abdi and Gajski [3] 
developed the Model Algebra, a mathematics formalism which 
can be used to represent system models and its transformations 
in the modeling levels using refinements. The consequences of 
the level abstraction increasing methodology, showed by 
Schutten [4], are the reduction of the need of SoC verification, 
reduction of design time, the gain in better obtaining results and 
the possibility of anticipates the concurrent hardware and 
software development. 

Using SystemC language, the project doesn’t need to be 
converted, by a great effort, from a description in C to a 
hardware description language, like Verilog. Instead of that, the 
project is refined in small sections to add hardware and timing 
constructs towards the system final objective. Using the 
successive refinement methodology, the designer can easily 
implements changes in the project and detects and solve 
problems during the refinement. 

3. MODELING LEVELS 

A level hierarchy applicable to digital system projects was 
firstly described by Bell and Newell, 1971, (apud MacFarland, 
Parker and Camposano [5]), and was used specifically to 
computational systems. A view of this hierarchy was proposed 
by MacFarland, Parker and Camposano, 1990, like an update of 
the Bell and Newell previous work. Gong, Gajski and Bakshi 
[6] describe a refinement model to the simultaneous 
development of hardware-software. This model uses the 
SpecCharts language to describe the modeling and its 
refinements. Bhasker [7] presents a design flow based on 
SystemC. The levels are well defined, consisting on four 
models (System Level Model, Timed Model, Behavior Level 
Model and RTL Model) that aggregate a different feature to the 
design in each refinement.  

The development of the work presented here is a model 
whose levels are detailed below. This definition of levels is 
necessary for demarcation of the purpose of the work. The 
refinement rules and implementation decisions here presented 
were compiled from [6], [7], [8], [9], [10], [11], [12] and [13]. 

Figure 1 – Refinement levels and their relation with simulation 
speed and accuracy 

3.1. Executable Specification Level Model 
The executable specification represents the straight translation 
of the design specification in SystemC, so that it is completely 
independent of the target implementation. This level does not 
implement time delay and the communication between modules 
is point-to-point. The data types are also abstracts. Because of 
the high abstraction of this level and by the absence of 
specificity in the code regarding the final objective of the 
project (cycle, pin and time precision absence) this level is not 
able to, therefore, be synthesized. 

The implementation decisions for this level are: definition 
of the process Thread, with the modules implementing the 
specific functionalities of the system; the use of the channel 
sc_fifo for communication between the modules, with the use 
of the directives read and write for, respectively, reading and 
writing in the fifo; initialization of the simulation with the  
sc_start(-1).

3.2. Transaction-Level Model (TLM) 
In this level, time delays are added to the process inside the 
project to reflect the time constraints of the specification,  target 
implementation processing and latencies of specific 
implementations. The communication between the modules is 
modeled using function calls; it has accuracy in terms of 
functionality and approximation in terms of time. However, it is 



not modeled in a precise structure form regarding to the target 
implementation, therefore details of communication (protocol 
used, by example) are treated subsequently.  

Refinement rules for the TLM: to insert wait in each 
computation and in each communication inside the processes; 
to change the sc_start for a time defined of simulation; to 
allocate modules for represent processing elements taking care 
with the processes inside them; to map global variables in local 
memories of the elements or in shared memory; to refine 
sc_fifo in global channels; to group global channels in 
hierarchical channels to form buses; to use interfaces to access 
the bus; to refine the accesses to the processes ports, from the 
previous level, to function calls that implements the interfaces 
of access to the bus.  

3.3. Behavioral Hardware Model (BHM) 
The BHM is pin and cycle accurate and its internal structure is 
closest to, but does not necessarily reflect, the target 
implementation. This model is synthesizable, despite still in an 
algorithm level, to show the inputs and outputs of the design 
with clock cycle accuracy of the final system. Beyond that its 
simulation is quicker than the subsequent level, RTL, due to its 
high level of abstraction.

The refinement rules for the BHM are: to use functions for 
manage the complexity of the system, if necessary; to replace 
the structures not synthesizable by synthesizable ones; to insert 
the cycle precision through waits in the operations of input and 
output; to insert adaptors in order to implement a bus in the 
RTL level. Insert these adaptors in the processing elements; to 
replace processes sc_thread by sc_cthread; to include a port 
clock in each module. 

3.4. Register Transfer Level Model (RTL) 
The RTL model is the lowest abstraction level supported by 
SystemC and corresponds to the digital hardware synchronized 
by clock signs. It describes the behavior of the finite states 
machine of the final project and its datapath. It is pin and clock 
cycle accurate, where each operation is carried out should have 
its defined precision. In this model, all the communication 
between processes occurs through signs. Its structure reflects 
precisely the registers of the target implementation and the 
combinational logic between them. 

The refinement rules for the RTL model are: to separate 
control logic and datapath, replacing sc_cthread by sc_method;
to decide the datapath architecture, replacing variables by signs; 
to define initial values of variables and signs in the constructor 
of the module; to define an explicit finite states machine for the 
control logic. 

4. RELATION BETWEEN THE LEVELS 

Higher abstraction levels imply higher simulation speed. 
This because a higher abstraction implies in less hardware 
implementation details to be described (Table 1), generating a 
simpler code and a quicker execution. In compensation, lowest 
level, as much as closest to the level RTL, higher will be the 
precision of the simulation and the capacity of synthesis, 
however, the simulation becomes more delayed due to the level 
of details necessarily employed. These details increase each 
refinement, towards to the RTL.

5. CONCLUSION 

The increase of the complexity and the increasingly scale 
integration in the present days lead the designers to redefine 

their methodologies of design. The use of a language that 
enables diverse levels of abstraction beyond a coherent and 
successive refinement permits the designer more liberty during 
the development. Besides, the possibility of a simultaneous 
development of hardware and software reduces the total time of 
the project, permitting the software to be developed over an 
environment implemented in a level of abstraction that will 
simulate the final hardware. We believe that SystemC is a 
powerful language for the designer and the use of the 
Successive Refinement Methodology will increase the 
productivity of the designer, facilitating the project of systems 
more and more complex. The levels are sufficient to help the 
designer to develop embedded systems more easily because 
they are essential to the refinement use. They add the specific 
feature at each refinement towards the target implementation. 
The use of a TLM level instead of a single Timed Model gives 
the correct attention to this feature at the correct time. 

Accuracy Metrics ESM TLM BHM RTLM
Functional Yes Yes Yes Yes 
Computation Timing No Approx Approx Cycle 
Communication Timing No Approx Cycle Cycle 
Communication Protocol No Approx Exact Exact 
Structural No Approx Approx Exact 
Pin No No Yes Yes 

Table 1 – Level accuracy in SystemC, adapted from [10] 

6. REFERENCES 

[1] Müller, W., Rosenstiel, W., Ruf, J. SystemC – 
Methodologies and Applications. Kluwer Academic Publishers, 
USA, 2003. 
[2] Gerstlauer, A., Gajski, D. System-Level Abstraction 
Semantics, Center for Embedded Computer Systems, University 
of California. 
[3] Abdi, S., Gajski, D. Provably Correct Architecture 
Refinement. Technical Report CECS-03-29. September 30, 
2003. Center for Embedded Computer Systems, University of 
California, Irvine, USA. 
[4] Schutten, R. Raising the Level of Abstraction Reduces 
System-on-Chip Verification, March 2004, Synopsys, Inc. 
[5] McFarland, M., Parker, A., Camposano, R. “The high-
level synthesis of digital systems”. Proceedings of the IEEE, 
special issue on The future of computer-aided design, Vol. 78, 
No. 2, pp. 301-318, Feb. 1990. 
[6] Gong, J., Gajski, D., Bakshi, S. Model Refinement of 
Hardware-Software Codesign. University of California, Irvine, 
ACM Transactions on Design automation of Electronic 
Systems, Vol. 2, No. 1, pp. 22-41, Jan. 1997. 
[7] Bhasker, J. A SystemC Primer. Star Galaxy Publishing, 
2002.
[8] Dias, S. Proposta de uma ferramenta de apoio ao 
projetista de sistemas embutidos usando SystemC. 1ª Semana de 
Pós-Graduação do CPDEE/UFMG, setembro, 2005. 
[9] Sypnopsys Inc. CoCentric SystemC Compiler Behavioral 
Modeling Guide. Version 2000.11-SCC1, March 2001. 
[10] Walstrom, R. System Level Design Refinement using 
SystemC. Master thesis. Iowa State University, Iowa, 2004. 
[11] Grötker, T., Liao, S., Martin, G., Swan, S. System Design 
with SystemC. Kluwer Academic Publishers – 
Boston/Dordrecht/London, 2002.
[12] Open SystemC Initiative. SystemC Version 2.0 User’s 
Guide – Update for SystemC 2.0.1. 2002. 
[13] Sypnopsys Inc. CoCentric SystemC Compiler RTL User 
and Modeling Guide. Version U-2003.06, June 2003. 


