
A VLSI PROTOTYPE OF A 32-BIT RISC PROCESSOR

Flávio du Pin Calmon and Ricardo Pezzuol Jacobi

Departamento de Engenharia Elétrica, Universidade de Brasília, CP 4386, Brasília, DF 70904-970, Brazil

ABSTRACT

This paper presents the prototyping of a 32-bit RISC
processor using VHDL and describes the necessary steps
for validation of the architecture, implementation,
simulation and test of the project. The processor used is
the RISCO, presented in [1]. Strategies for optimization
of VHDL code are studied, analyzing the implementation
of a bank of 32-bit registers. RISCO is a strong candidate
for being used as a co-processor or an auxiliary module
in SoC (System on Chip) applications.

1. INTRODUCTION

Hardware Description Languages (HDLs) are used
for programming PLDs (Programmable Logic Devices).
The use of HDLs allows a well-defined description of a
project and permits a faster design. As a consequence, a
preliminary version of a digital project can be quickly
compiled, synthesized and programmed on PLDs,
allowing the validation of a device’s architecture and the
testing of its integration with other elements of a system
[2].

This work presents the modeling of a 32-bit RISC
processor using VHDL (Very High Speed Integrated
Circuit Hardware Description Language) for its synthesis
on a FPGA, describing the necessary steps for validation
of the architecture, implementation, simulation and test
of the project. The processor used is the RISCO,
described in [1]. This processor has certain
characteristics that allow future changes and
enhancements, such as the possibility of expanding its
instruction set without great modifications of the
architecture, increasing its functionality. RISCO is a
strong candidate for being used as a co-processor or an
auxiliary module (e.g. configurable processor [3]) in SoC
(System on Chip) applications.

The paper is divided in five parts. Initially, the
general characteristics of the RISCO processor are
presented. In the third topic, the steps for the
implementation in VHDL are described. The next item
shows the results of tests and simulations. Finally, the
conclusions are presented.

2. RISCO’S CHARACTERISTICS

RISCO is a 32-bit processor with RISC architecture.
Therefore, its data, instruction and addresses are referred
by 32-bit words. This processor has a three stage
pipeline, with a peak operation of one instruction per
machine cycle. Each machine cycle is formed by three

different phases. “Jump” instructions have their
execution retarded by one machine cycle.

The architecture can be divided in “operational part”,
referring to the memory, communication (e.g. buses) and
transformation elements (e.g. ALU), and the “control
part”, designating the state machine and pipeline control
that defines the processor’s operation.

3. VHDL IMPLEMENTATION

The RISCO model created with VHDL implements a
comprehensive and unambiguous functional description
of the processor. This approach was necessary due to the
lack of a simple and clear reference of the register
transfer level characteristics of the device. A simple and
well commented VHDL code was developed.

The project uses a “down-up” approach, describing
the most basic elements of the architecture first. The
implementation was divided in two blocks (figure 1),
connecting them in a final entity.

3.1. Operational block

The structures of the operational block were created
following basic project rules for avoiding errors when
joining them in a final entity. All structures were
described to keep their outputs in a high-impedance state
when not being accessed. This measure was essential for
the operation of the model, due to the extensive use of
shared buses in the architecture. The project aimed
coherence between the implemented structures and those
found in the original conception of RISCO.

VHDL allows multiple ways for describing a certain
structure, resulting in a greater versatility and speed for
code generation. To study the effect of synthesizing a
component described using different VHDL structures,
five different implementations of the RISCO’s register
bank were created, comparing the synthesis results using
Xilinx ISE 6 software [4]. All the syntheses were made
for a Xilinx XC2S50E FPGA. The characteristics of each
implementation can be found on Table I, and the
synthesis results on Table II.

Figure 1 - RISCO’s block diagram. On the left are the
input signals and on the right, the output signals.

TABLE II -PERCENTAGE OF DEVICE UTILIZATION FOR EACH

IMPLEMENTATION OF THE REGISTER BANK ON A XILINX XC2S50E
FPGA.

Implementation number
Resources

1 2 3 4 5
Number of Slices 160% 216% 143% 148% 74%

Number of Slice
Flip Flop

72% 72% 66% 137% 64%

Number of 4 input
LUTs

141% 206% 80% 24% 20%

Number of
GCLKs

- - 25% 25% 25%

The synthesis results indicate clearly that the
implementation that generates the least device utilization
is the fifth one. Therefore, a good strategy, in terms of
resource occupation, for creating VHDL code is to use
structural descriptions, using a reduced logic complexity
in individual components (such as the registers, in this
case) and standardized functions whenever possible,
present in the language’s libraries.

3.2. Control block

The RISCO’s control block was implemented using
sequential instructions. The Pipeline was described as a
state machine, always executing the three necessary
phases for each instruction, using additional phases for
memory access instructions. A general reset was also
introduced, along with the necessary signaling for the
external memory. The use of VHDL allowed the
development of a concise description of the Pipeline’s
dynamics. As a consequence, the code may be used as a
reference for future studies of the processor. Also, the
analysis of any changes that may be done on the
processor’s architecture will be considerably simpler.

4. TESTS, SIMULATIONS AND RESULTS

Once finalized the description of the RISCO
processor, a series of simple tests validated each
component of the operational block and the control
block. After verifying the correct operation of each block,
a test structure was created. An external memory was
described using VHDL, storing the instructions and data
for simulating the processor’s operation. A final block
instantiated and connected both entities, resulting in the
final test-bench entity.

The simulations of the test-bench entity used the
ModelSim XE III 6.0a software. The tests realized were
sufficient to validate the architecture, with the execution
of various instructions being verified, along with the
Pipeline’s behavior. The resource utilization of the final
synthesis using Xilinx ISE 7.1.03i software [5] can be
found on Table III.

5. CONCLUSION

A 32-bit RISC processor, the RISCO, was
successfully validated and tested using VHDL. With an
implementation of the processor using a Hardware
description language, it is considerably easier to
understand the RISCO’s operation and study the effect of
future changes or enhancements on its operation. An
analysis of different strategies for describing logic
devices in VHDL was also made, allowing synthesis
optimization.

6. REFERENCES

[1] A. A. Junqueira, “RISCO – Microprocessador RISC CMOS
de 32 bits”, M.Sc. dissertation, Informatics Institute of the
Federal University of Rio Grande do Sul, Porto Alegre, RS,
1993.
[2] K. Skahill, VHDL for programmable logic. California:
Addison-Wesley Longman, 1996. 594p.
[3] S. Leibson, J. Kim, “Configurable Processors: A New Era
in Chip Design” IEEE Computer Magzine, vol. 38, no. 7, pp.
51–59, Jul. 2005.
[4] ISE 6 In-Depth Tutorial, Xilinx Inc., 2005 [Online].
Available: http://direct.xilinx.com/direct/ise6_tutorials/
[5] ISE 7 In-Depth Tutorial, Xilinx Inc., 2005 [Online].
Available: http://direct.xilinx.com/direct/ise7_tutorials/

TABLE I - DIFFERENT IMPLEMENTATION STRATEGIES FOR A 32-BIT

REGISTER BANK

Implementation
number

Characteristics

1 Described with sequential instructions, using the
conv_integer function for decoding selection
signals. The resulting code is simple and clear.

2 Same as the first implementation, except with
explicit address decoding using case-when type
instructions. Results in a larger code that is harder
to debug, but functionally more direct.

3 Uses a structural, low-level description, joining in a
final entity address decoders, multiplexers for
controlling bus access and 32 individual registers.

4 Uses a structural description, inserting more
complexity to the individual registers, using fewer
components for external access control, such as
decoders and multiplexers. The resulting code is
simple and direct.

5 Based on the synthesis results of the previous four
implementations. Uses the conv_integer function
for decoding, with little complexity in the
individual registers. The bus access was described
using 32-bit buffer banks.

TABLE III - RESULT OF RISCO´S SYNTHESIS FOR A XILINX

XC3S400 FPGA.

Parameter Result

Number of Slices 84%

Number of Slice Flip Flops 18%

Number of 4 input LUTs 78%

Number of IOBs 17%

Number of GCLKs 25%

Maximum operation frequency 50.774 MHz

