COARSE-GRAINED RECONFIGURABLE ARCHITECTURES

Alisson Gongalves Damasceno Garcia
Ricardo Santos Ferreira
Universidade Federal de Vigcosa, Departamento de Ciéncia da Computagdo
Vicosa, MG Brasil CEP 36570-000
alissongarcia@gmail.com - cacau@dpi.ufv.br

ABSTRACT

This work presents a set of tools to explore a
reconfigurable system based on scalar processors and
Coarse-Grained Functional Units Accelerators. These
tools have been added to an EDA environment [1], which
has been developed by using an incremental approach.
Our environment allows the designer to model and to
simulate several processor/array architecture
characteristics in order to evaluate implementation
tradeoffs. The tools are implemented in Java/XML to
provide portability and extensibility. Our main
contributions are: web interface, array routing algorithm,
import/export features, a flexible Java processor
simulation, a flexible DSP kernel simulation based on
array architecture, and a XML array specification.

1. INTRODUCTION

Recently, array processor architectures have been
proposed as extensions of microprocessor-based systems.
These architectures have been used to accelerate
streaming applications and to save energy. An array is a
regular structure, which is scalable and presents a high
degree of parallelism.

A previous work, named EDA (Environment for
Exploration of Data-Driven Array Architecture) [1] has
been presented to support coarse-grained array
exploration. Our goal is to improve EDA by adding more
tools to model and simulate new architectures.

FL - (rrEEE

T 1IMore...

i , EE e rl
[pE][pE] [PE]:

(MEMORY)-:—r- . Confs _

Fig. 1 CPU, Memory and Reconﬁgurable Array
Architecture

Moreover, scalar processors connected to Coarse-
Grained architectures shows a very interesting solution
(see Fig. 1).

We have been using a Java-based editor/simulator tool
called Hades [2] and XML, to provide more portability
and extensibility.

2. EXTERNAL INTERFACE

This work aims to support multiprocessor. A set of
Low power Java processors has been present in [3]. This
set is composed by a multicycle version, a 5-stage
pipeline, a VLIW and an array of functional units attach

to the pipeline version. All processors have been
evaluated by using a power simulator, named CACO-PS
[4]. We have implemented a java parser to import a
CACO-PS description into EDA. To wvalidate our
approach, we have mapped a low power pipeline
FemtoJAVA processor, which has 338 components and
352 signal wires. In addition, we have added a graphic
interface (see Fig. 2), and web applet [5].

Registers
1| e Register Bank

-+ ROM

L | T RAM

By g T B S (e S (TR i S s e
FETCH DECODE Lt EXEC I
002b00BE_H 0 0

{ wop_aload_l wop invokestati [} 0
Clock: (1]

S Instruction Stage

Fig. 2 FemtoJAVA Pipeline on Hades.

The graphical interface provides detailed
characteristics about the functioning like dynamic
behavior, instant power consumption, etc.

3. ARRAY FRAMEWORK

A coarse-grained array processor is a regular
architecture which is based on set of interconnected
processing elements (PEs). To simulate a generic array
structure, we propose a frame component. This frame is a
reconfigurable Java class. One or more functional units
can be instanced inside a frame. A XML file specifies
how the set of frames are interconnected. The
interconnect pattern could be a bus, a crossbar, a grid, a
hypercube, a hierarchical clusters.

Fig. 3 Frames.

Figure 3 shows a heterogencous array. For example, a
frame can have a FU Unit (A) or a cluster of frames (B),
the interconnection can be heterogeneous (C1, C2, C3)
and the array can also have a bus (D).

3.1. N-Hop Arrays

Recently, the N-Hop topologies with interconnections
between adjacent and non-adjacent frames (see Fig.4),
have been presented as a suitable alternative to coarse
grained arrays, where N represents the number of frames
the longest interconnection from a frame can leap.

We have implemented a Hybrid Non Symmetrical N-
Hop Pattern, where each PE could have non-symmetrical
interconnection. For instance (see Fig. 4C) PE, is
connected to PE, by using a 1-hop and PE, is connected
to PEs by using a 4-hop. Initially it has demonstrated
good trade-offs, reducing significantly the distance
between all the PEs if compared to other grid topologies.

PEU‘ PE |PE3 \H PI3 |+—r| PEy |++| PEs |PE6 \ﬁ‘ PF7 ¢

Fig. 4 1-Hop(A), 0_2H0p(B) and Non Symmetncal
N-Hop(C) example.

We proposed a tool that builds a Java-based array
architecture from a XML description. See below a part of
0 2Hop example (see Fig. 4B). This extract of the XML
file describes an array of 4 elements. Then, the PE, is
defined. The borders number defines the PE
interconnection. In these case, PE, is connected to PE;
and PE, is connected to PE;.

<ARRAY rows="1" columns="4">
<PE row="0" column="0" >
<BORDERS number="2">

<BORDERI outs="1"ins="1">
<QUTO cRow="0" cColumn="3">

</BODERI>

<BORDER?2 outs="2" ins="2">
<OUTO0 cRow="0" cColumn="1">

</BODER2>
</BORDERS>
</PE>
</ARRAY>.

This tool was validated by the running dataflow array
implementation of typical DSP kernel algorithms. Let us
consider the FDCT kernel, which is a fast discrete cosine
transform implementation mapped on 10x10 array. The
resulting simulation structure has around 9,000 objects
(wires, Functional units, frames, configuration inputs). A
250 sample stream took less than 1 minute to be
simulated at a register transfer level for FDCT.

3.2. Routing

We have also been working on routing algorithms to
improve the current version of EDA. The previous work
[1] presents a greedy routing algorithm. However, this
greedy approach [1,6] is not generic, and it is constrained
to grid topologies. We have implemented a greedy
approach based on Dijkstra's Shortest Path. We have
found a generic approach that can route any topologies
and shows better and more efficient results than previous
work [1].

Our tool was validated with successful routing of
major algorithms into the array like Fir128 (with 385 PEs
and 511 connections) in less than 1 second.

4. CONCLUSION

This paper presents a set of tools, based on Java and
XML, to provide early evaluation of data-driven,
reconfigurable, array architectures. This approach
includes a flexible processors/array simulation and
routing scheme developed to easily evaluate different
array topologies. Further work is also needed to generate
an automatic VHDL prototype of a certain array or data-
driven solution in an FPGA. Long-term plans include a
front-end compiler to continue studies of some data-
driven array features with complex benchmarks.

5. REFERENCES

[1] Ricardo Ferreira, Jodo M. P. Cardoso, Andre Toledo, and
Horéacio C. Neto, “Data-driven Regular Reconfigurable Arrays:
Design Space Exploration and Mapping,” in Embedded
Computer Systems: Architectures, Modeling, and Simulation
Sth International Workshop (SAMOS’05), LNCS 3553
Springer, pp. 41-50, Samos, Greece, July 18-20, 2005.

[2] N. Hendrich, “A Java-based Framework for Simulation and
Teaching,” in 3rd European Workshop on Microelectronics
Education (EWME’00), Aix en Provence, France, 18-19, May
2000, Kluwer Academic Publishers, pp.285-288.

[3] Antonio C. S. Beck, Luigi Carro. “Dynamic reconfiguration
with binary translation: breaking the ILP barrier with software
compatibility”, in ACM [EEE Design Automation Conference,
San Diego, California, USA, Pages: 732-737, 2005

[4] Antonio C. S. Beck, Julio C. B. Mattos, Flavio R. Wagner,
and Luigi Carro (2003). “Cacops: A general purpose cycle-
accurate configurable power simulator”. In 16th Symposium on
Integrated Circuits and Systems Design (SBCCI'03), page 349,
Sao Paulo, Brazil.

[5] http://tams-www.informatik.uni-hamburg.de/applets/hades/
webdemos/96-femtojava/caco-pipeline/quicksort.html

[6] Israel Koren, Bilha Mendelsom, Amherst Irit Peled, Gabriel
M. Silberman, “A Data-Driven VLSI Array for Arbitrary
Algorithms”, IEEE Computer, pp: 30 — 43, 21 (10), 1988

