
INTEGRATED DIGITAL SYSTEMS DESIGN METHODOLOGY

Ramon Risério Dourado Leite (ramon@cdpee.ufmg.br)
Diógenes Cecílio da Silva Jr (diogenes@cpdee.ufmg.br)

Universidade Federal de Minas Gerais – Departamento de Engenharia Elétrica

ABSTRACT

The emergence of system-on-chip (SoC) technology is
leading to a great raise on the current electronic circuitry
complexity. As a result, adapted methodologies to SoC
design are being developed in order to increase productiv-
ity and fit time-to-market. In this paper, a design SoC
methodology is presented – based on SystemC language.
It handles four abstraction levels to describe, simulate and
verify hardware systems and decrease project’s develop-
ment and verification time. It is presented a simple 8-bit
adder case study that uses this methodology.

1. INTRODUCTION

Today, due to the continuous development of silicon
process technology, complex systems can be embedded
into a single circuit, named Systems-on-Chip (SoC) [2].
SoCs integrate the principal functional elements of a
complete final product in a single chip. The emergence of
SoC, the great complexity of the new chips and the de-
creasing market window is forcing fundamental changes
in the way electronic systems are projected [1].

Methodologies are being created and adapted to pro-
mote higher level of project productivity [4]. Such
changes of methodology aim at to reduce time and devel-
opment effort, to increase previsibility and to reduce the
risk involved in the project of these complex CIs.

One approach that is been consolidating as an alterna-
tive to increase the project productivity is the component
reuse in projects based on pre-designed components (IP's
- Intellectual Property) and in platforms [4]. Platforms are
common architectures that use libraries of IP's and other
tools as support technologies.

This article proposes a development methodology for
IP designs, presents a case study that shows the difference
between four abstraction and modeling levels of the
methodology, and also indications of the benefits of your
use for decreasing development and test designs time.

2. METHODOLOGY

Traditional design methodologies, such as that use
hardware description languages (HDLs), start from very
detailed design models [3]. Designers tend to make many
mistakes due to these detailed models, causing re-design,
and increasing simulation and debugging time. Therefore,
due to your complexity, electronic systems design has
forced the use of more abstract models.

SystemC is a class library that allows to model, to
simulate and to verify hardware systems and software in

several abstraction levels. It’s based on C++, but extends
its capacities, bringing important concepts such as con-
currency and events [3].

The proposed methodology makes use of SystemC to
implement top-down technique defining and testing sys-
tems components. It starts from a high level model, mak-
ing possible higher simulation speed. As higher level
models are tested and approved, design is detailed more
and more until the RTL (Register Transfer Level). This
level has simulation time with more accuracy. Then, RTL
design model, written in SystemC, can be translated into a
HDL, such as Verilog HDL and VHDL, to be synthe-
sized. Testbench - which is also written in SystemC - is
reused to assure that successive refinement steps of the
model don't introduce errors. This methodology of analy-
sis, simulation and test cycles are used to minimize or to
eliminate risks associated to the design, thus, decreasing
development time.

The methodology foresees four models: reference
model - that can be described in C, C++ or SystemC; be-
havioral and RTL models - that must be written in Sys-
temC; and synthesis - that can be written in Verilog or
VHDL. This increasing of model and abstraction levels
should be compensating by raising the productivity.
These models will be presented below.

Reference Model: the reference model, or functional
specification, is the earliest conceptual model. It’s a
high level abstraction that seeks to decrease complex-
ity to define and to test the functional aspects of the
system to be designed. Therefore, it allows an increase
of the simulation speed the reducing of time and de-
bugging effort.
Behavioral Model: the behavioral model introduces
concept of time and it may be described using transac-
tions [5]. Once obtained the timing model, several
hardware and software architectures can be explored.
RTL Model: the RTL model is synchronized by clock
signs. This model is synthesizable and describes the
behavior in terms of finite state machines.
Synthesis: Starting from RTL synthesizable model it
can be chosen two non excluding roads: to synthesize
the system into a FPGA (Field Programmable Gate
Array), or to implement it in a chip or ASIC.

3. ADDER CASE

For better understanding of methodology models,
code pieces of an 8-bit adder design are presented. This
adder must add two 8-bit integer numbers and to produce
the sum result, and the overflow occurrence.

3.1. Reference Model

The code shown in Figure 1 was made in accordance
to a reference model characteristics and uses SystemC. In
spite of based on SystemC, the code doesn't use special-
ized language resources, limiting itself to the adder func-
tional aspects - addition of two numbers – i.e., without
worrying with implementation details. The simulation
CPU run time of entire code of reference model to per-
form 225 additions was 0.05 s.

Fig. 1 Reference Model

3.2. Behavioral Model

The code shown in Figure 2 was made in accordance
to reference model characteristics and it use SystemC too.
In this methodology step, specific characteristics of Sys-
temC are used, such as concurrency and timing. It shows
a process (process_adder) that is permanently being exe-
cuted, i.e., it simulates real circuit operation. Other proc-
esses can be executing simultaneously.

Fig. 2 Behavioral Model

In the behavioral model, timing is defined by esti-
mates or imposed by design requirements. CPU run time
of entire code of behavioral model to perform 225 addi-
tions was 0.08 s (60% higher than reference model execu-
tion time).

3.3. RTL Model

The code shown in Figure 3 presents the RTL model
characteristics, i.e., it represents an 8-bit adder concurrent
process. It must be synthesizable, therefore timing charac-
teristics can’t be simulated into the process. Timing must
be simulated by clock, which is established in another
code part. Clock frequency is defined by estimates or im-
posed by design requirements.

Fig. 3 RTL Model

CPU run time of entire code of behavioral model to
perform 225 additions was 0.12 s (50% higher than be-
havioral model execution time, and 140% higher than
RTL model execution time).

This code can be refined, using HDLs, such Verilog
or VHDL, that allows the adder circuit to be implemented
in a FPGA. It should be noticed in the code above the
concern with implementation details, such as the number
size and overflow (carry_out) signal.

Figure 4 presents the results produced by the adder
(RTL model), using GTKwave software [6]. Six entries
were used for test. Outputs attest appropriate adder opera-
tion.

Fig. 4 GTKwave image – results of adder RTL model

4. CONCLUSIONS AND PERSPECTIVES

Based on development of a simple system design (8-
bit adder), it was verified that run times for simulation
grows up as model becomes more detailed. RTL model,
which is commonly used as entry by traditional design
methodologies presented bigger run time. This is an in-
dicative of methodology benefit, because less detailed
models usage, in addition to allow smaller simulation
time, reduces significantly time debugging, increasing de-
signer productivity.

A video controller design is being implemented using
the presented methodology. Design results are reaffirming
methodology benefits. As future work, RTL video con-
troller model will be refined to allow FPGA synthesis.

5. REFERENCES

[1] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, L.
Todd, Surviving the SoC Revolution – A Guide to Platform-

Based Design, Kluwer Academic Publishers, Boston, 1999.

[2] Reinaldo A. Bergamaschi and J. Cohn, “The A to Z of
SoCs”, Proceedings of the 2002 IEEE/ACM international
conference on Computer-aided design, pp. 790-798, 2002.

[3] Bhasker, J., A SystemC Primer, Star Galaxy Publishing,
USA, 2002.

[4] Black, David C., and Jack Donovan, SystemC: from the

ground up, Kluwer Academic Publishers, Boston, 2004.

[5] Bernhard Niemann, “Using SystemC for High-Level Model-
ing and Refinement”, SNUG Papers, Europe, 2004.

[6] GTKwave, http://www.cs.manchester.ac.uk/apt/projects/
tools/gtkwave/.

void adder_RTL::process_adder(){

 sc_uint<9> s; // number sizes

 sc_uint<8> aux_a, aux_b, aux_sum;

 sc_bit aux_carry_out;

 aux_a = a.read(); // read entry ports.

 aux_b = b.read();

 s = aux_a + aux_b; // operation

 aux_sum = s.range(7, 0);

 aux_carry_out = s[8]; // overflow

 sum.write(aux_sum); // write output ports

 carry_out.write(aux_carry_out); }

while (infile >> a >> b) { // read numbers

 sum = a + b; // sum numbers

}

void adder::process_adder() {

 while(true) { // process works permanently

 sum = a + b; // sum values previously read

 wait(5, SC_NS); } // delay simulation

}

