
* Supported for the National Program of Microelectronics/CNPq, Proc. nº 132874/2005-9.

AUTOMATIC ADL-BASED GENERATION OF DISASSEMBLING TOOLS

Alexandre K. I. Mendonça, Felipe G. Carvalho, Max R. O. Schultz*, Luiz C. V. Santos, Olinto J. V. Furtado

Federal University of Santa Catarina
Computer Science Department

Florianópolis – SC – Brazil
{mendonca, fgcarval, max, santos, olinto}@inf.ufsc.br

ABSTRACT

Embedded software evaluation for distinct CPU targets is required
during SoC design space exploration. To cope with time-to-market,
such exploration asks for automatically retargetable code generation
and debugging. Since embedded software debugging tools rely on
monitoring object code at the back-end so as to allow source code
inspection at the front-end, disassembling tools are needed to bridge
both ends. This paper describes the automatic generation of
disassembling tools for an arbitrary instruction-set architecture (ISA),
formally described in an Architecture Description Language (ADL).
Experimental evidences of proper functionality, wide-range
retargetability and runtime efficiency are provided for MIPS, SPARC,
PowerPC and i8051.

1. INTRODUCTION

SoC development requires the evaluation of embedded software
running on alternative target CPUs for the sake of design space
exploration. To cope with time-to-market, such exploration asks for
automatically retargetable code generation and debugging. On the one
hand, assembling and linking tools are needed to generate object code.
On the other hand, disassembling and debugging tools are required to
monitor object code, thereby supporting software development.

We address the retargetable disassembling problem by
automatically generating a disassembler from a formal description of
an arbitrary target CPU. Since a debugger employs a disassembler to
inspect object code, this work paves the way to achieve automatically
retargetable debugging.

This paper is organized as follows. Section 2 briefly describes
related work and summarizes our implementation infrastructure.
Section 3 describes our technique for automatic generation of
disassemblers. Experimental results are summarized in Section 4,
whereas our conclusions are drawn in Section 5.

2. RELATED WORK

The formal description of CPUs often relies on Architecture
Description Languages (ADLs). ArchC [1] is an example of open-
source ADL. Although assembler [2] and linker [3] generation are
already available from ArchC, this work was motivated by the lack of
a disassembler generator within the ArchC tool chain.

2.1. ArchC

To explain how our technique extracts information from an ADL
description, let’s illustrate a few ArchC constructions by means of the
example in Figure 1. Line 1 defines the fields of a given format type
(Type_I). In line 2, instructions sb, sh and sw are tied to the defined
format. The mapping between symbolic names and actual CPU
registers is performed in lines 3 to 12. Line 13 defines the assembly
syntax for instruction sb. Line 14 assigns an encoding value to that
instruction’s opcode field.

2.2. GNU Binutils

Manually retargetable binary utilities are available within the popular
GNU Binutils package [4] like assembler (gas), linker (ld), debugger
(gdb) and disassembler (objdump). Essentially, the Binutils package
consists of an invariant ISA-independent core module and a few ISA-
dependent modules that must be rewritten for each new target CPU.
Among the ISA-dependent modules, there are two main libraries,
namely Opcodes and BFD, which require retargeting.

The Opcodes library describes the ISA of a CPU (instruction
encoding, register encoding, assembly syntax). Unfortunately, there is
no standard for ISA description within this library.

The BFD library provides a format-independent (ELF, COFF,
A.OUT, etc.) object file manipulation interface. It is split into two
blocks: a front-end, which is the library’s abstract interface with the
application and a back-end, which implements that abstract interface
for distinct object file formats.

3. DISASSEMBLER GENERATION

Our generation technique relies on the GNU Binutils package as
implementation infrastructure. Given the native GNU Binutils
disassembling tool (Objdump), its ISA-independent modules are kept
untouched and its ISA-dependent modules are automatically generated.
The information required for generating the ISA-dependent modules is
automatically extracted from the ADL description of the target CPU.

 Figure 2: The structure of a disassembling tool

1. ac_format Type_I =

 "%op:6 %rs:5 %rt:5 %imm:16:s

2. ac_instr<Type_I> sb, sh, sw, swl, swr;
3. ac_asm_map reg {

4. "$"[0..31] = [0..31];

5. "$zero" = 0;

6. "$at" = 1;
7. "$kt"[0..1] = [26..27];

8. "$gp" = 28;

9. "$sp" = 29;

10. "$fp" = 30;
11. "$ra" = 31;

12. }

13. sb.set_asm("sb %reg, %imm(%reg)",

 rt, imm, rs);
14. sb.set_decoder(op=0x28);

Figure 1 –Example of ArchC description

The disassembling tool structure is depicted in Figure 2, where the
generated modules are marked with an asterisk. The compilation of all
such modules results in a disassembling tool that reads an input object
file and produces a corresponding output assembly file.

3.1. Opcodes Generation

Let [arch] represent a given ISA. The most important files generated by
our tool are the following:

• include/opcodes/[arch].h: This file declares three data structures
supporting instruction decoding and encoding, the mapping
between register names and encodings and pseudo-instruction
manipulation. (It should be noted that disassembling doesn’t
make use of pseudo-instructions to avoid ambiguity).

• opcodes/[arch]-opc.c: This file contains the above mentioned
data structures, which are fed with the information extracted
from the ADL description by the ArchC preprocessor.

• opcodes/[arch]-dis.c: This is the most important file for the
disassembling process. It manipulates the above mentioned data
structures and invokes BFD interface methods to read object
files.

3.2. BFD Generation

ISA attributes extracted from the ADL description are encoded within
this library. Since we have adopted the ELF format, only the ELF-
related files are generated. The file bfd/cpu-[arch].c is the most
important among them and contains information such as architecture
name, word size and address size.

4. EXPERIMENTAL RESULTS

For the sake of tool validation, we have adopted the well-known
Mibench [5] benchmark running on three distinct target CPUs (MIPS,
PowerPC and SPARC). Since that benchmark suite requires file
manipulation, a feature barely suitable for micro-controller targets, we
were obliged to use instead the simpler Dalton benchmark suite [6] for
target i8051. To generate assemblers, we have used the tool acasm [2]
and to generate disassemblers, we have employed our acdsm tool.

4.1. Validation of generated tools

To validate the generated tools, we performed the following procedure:
• Step 1: Given a target CPU description, acdsm generated a

disassembler, while acasm generated an assembler.
• Step 2: Given an input object file, it was fed to the disassembler,

giving rise to an assembly output file.
• Step 3: The assembly file was fed to the assembler, resulting in

an object output file.
• Step 4: The input and output object files were compared to

check whether their “.text” sections matched or not.
Since all the comparisons matched for every benchmark program

and each target CPU, there is a strong evidence of proper validation.
It could be argued that such procedure should compare assembly

codes (input against output). However, the direct comparison of
assembly codes is hampered by the presence of pseudo-instructions or
instructions admitting multiple assembly syntaxes. For instance, the
MIPS instruction “jump at register” can be written in two different
ways: “jr $1” or “j $1”. That’s why reversed matching was used
instead of direct matching, without loss of generality.

4.2. Validation of the generating tool

To check for proper retargetability of the generating tool, the
procedure above was repeated for RISC (PowerPC, MIPS, SPARC)

and CISC (i8051) targets, whose results are shown in Tables 1 and 2,
respectively. The first two columns show the benchmark programs and
respective number of files. The remaining columns show the sizes of
“.text” sections and disassembling runtimes for each distinct target
CPU. Note that the disassembling tools generated with acdsm exhibit a
slight increase in runtime as compared to the GNU native
disassembling tool (objdump). This increase is a small price to pay for
the benefit of achieving automatic retargetability.

Table 1 – Results for RISC targets

Prog. #Files “.text” size [Kb]
runtimes [s] - acdsm / objdump

 MIPS SPARC PowerPC
typeset 1 29

0.061 / 0.040
31.9

0.080 / 0.038
24.8

0.057 / 0.046
bitcount 9 4.9

0.016 / 0.009
4

0.015 / 0.010
4.1

0.014 / 0.009
susan 1 63.2

0.117 / 0.083
58

0.152 / 0.062
51.5

0.116 / 0.098
jpeg 60 310.4

0.482 / 0.327
234.3

0.577 / 0.225
223

0.477 / 0.414
fft 3 9.8

0.015 / 0.010
5.4

0.018 / 0.013
5.2

0.016 / 0.014

Table 2– Results for CISC target (i8051)

Prog. #Files “.text” size [bytes] runtimes [s]
int2bin 1 188 0.003
cast 1 213 0.003
sort 1 425 0.004
xram 1 214 0.004

5. CONCLUSIONS AND FUTURE WORK

The described ADL-based automatic generator of disassembling tools
seems suitable to supporting embedded software development during
SoC design space exploration. Experimental results provide evidences
of proper functionality, wide-range retargetability and runtime
efficiency. Besides, it paves the way to building up an automatically
retargetable debugger.

6. ACKNOWLEDGMENT

We would like to thank Alexandro Baldassin (UNICAMP) for his
cooperation with this work.

7. REFERENCES

[1] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araújo, C. Araújo, and
E. Barros. The ArchC architecture description language. International

Journal of Parallel Programming, 33(5):453–484, 2005.

[2] A. Baldassin et alii. Extending the ArchC language for automatic
generation of assemblers. Int. Symp. on Computer Architecture and

High Performance Computing, 2005.

[3] D. Casarotto and L. Santos. Automatic Link Editor Generation for
Embedded CPU Cores. 4th Int. IEEE Northeast Workshop on Circuits

and Systems, Gatineau, Canada, 2006.

[4] The GNU Binutils package. Available at
http://www.gnu.org/software/binutils.

[5] Benchmark Mibench. Available at
http://www.eecs.umich.edu/mibench/index.html.

[6] Dalton Project. Available at

http://www.cs.ucr.edu/~dalton/i8051/i8051syn.

