
PDESIGNER – A MPSOC MODELING FRAMEWORK

Andre Souza, Millena Almeida, Williams Azevedo, Cristiano Araújo, Edna Barros
Informatics Center (CIn) - Federal University of Pernambuco

Filipe Rolim, Abel Silva

Escola Politécnica – University of Pernambuco
Recife, PE, Brazil

ABSTRACT

This paper presents the PDesigner Framework, a set

of tools based on ArchC and SystemC and integrated in
the Eclipse workbench, which allows the modeling,
simulation and analysis of multiprocessor SoCs. The
framework supports platforms modeled at different
abstraction levels. PDesigner supports processor
modeling, platform modeling, component distribution,
simulator generation, execution an energy consumption
estimation of cache components. Using the analysis
capabilities of the tool the designer can explore the
platform architecture space in an efficient manner.
Moreover, all these features are integrated in a unified
and configurable graphical environment. The PDesigner
is based on components library distributed at a standard
that enables the user to import and export components
for other tools or designers. That library was used to
explore platform architectures and to design a platform
to execute the FFT and inverse FFT applications of the
Mibench benchmark.

1. INTRODUCTION

The fierce competition in the IC market is

characterized by the design of complex circuits. This
reflects the design of multiprocessor platforms to
implement such circuits. These platforms are normally
implemented as SoCs (System-on-chip [1]) and may be
composed by several heterogeneous processors like
RISC, DSP, high performance interconnection structures
and memory hierarchy. Moreover the increase in the
complexity, designers have to work with tighten design
times[2].

In the design of SoCs there are two main trends: the
reuse of components previously designed and verified
(IP-cores), and the increase of the model abstraction
level, through system level description languages, such as
SystemC [3]. IP reuse and high abstraction level allows
faster system modeling, analysis and validation through
simulation. Moreover, the use of high abstraction levels
provides architecture exploration in earlier design phases
and with a smaller effort, and also allows earlier software
development.

IP reuse presents some particularities. It is only useful
when the effort to integrate the component is smaller than
creating a new one. Difficulties arise during the

integration of these components due to incompatibilities
in the component interface and insufficient
documentation. Those problems cause, in complex cases,
a great effort to adapt the interface and protocols of the
IP to the interfaces and protocols of the system. This
effort is, in some cases, similar to designing a new
component from scratch. In order to decrease the
integration effort, industry and academy have proposed
standards like the SPIRIT Consortium IP-XACT [4] for
the IP distribution through XMLs descriptions of its
structure and use, easily adapted for use in platform
modeling tools.

This paper presents the PDesigner framework, a set of
SystemC based tools for multiprocessor SoC design that
enables the modeling, simulation, architecture
exploration and component analysis in an integrated
framework compliant to SPIRIT IP-XACT 1.2.The rest
of the paper is structured as follows. Related work is
described in section 2. PDesigner design flow is
presented in section 3 The PDesigner framework is
explained in section 4. PDesigner analysis plugins are
described in section 5. An integrated IP distribution tool
is described in section 6. The results are discussed in
section 7. Finally, some conclusions are given in section
8.

2. RELATED WORK

CoWare [5] Virtual Platform, is a commercial

framework that enables the modeling of virtual platforms,
from its creation until its distribution. This framework
allows parallel software and hardware development and
its validation through the simulation of the virtual
modeled platform. The CoWare management infra-
structure allows the platform packaged distribution and
auto installation, that includes a simulator and tools for
performance analysis, system controllability and
observability.

The ArchC Reference Platform (ARP) [6] is a
platform structure model based on ArchC[13] processors.
It defines a directory structure for platform components,
as processors, buses, memories, configured by a script
that generates, compiles and simulates the platform.
Using ARP the designer has to integrate the components
in the platform manually.

3. PDESIGNER DESIGN FLOW

The PDesigner design flow (Figure 1) enable the

entire platform modeling, since the description of a
component until the generation of the simulator used to
analyze it.

Figure 1 PDesigner Design Flow

The designer can model a platform within PDesigner
framework using components designed by different ways
and tools. Other SystemC components can be distributed
using an IP distribution tool and added to the same
library.

Once the designer has all the desired IPs into the
PDesigner library, he/she can model the platform and
load the application into its processor(s). The complete
MPSoC model is generated after platform configuration
through component parameters set.

The PDesigner allows the user to simulate the MPSoC
modeled and use its information to analyze it and explore
the architecture using some available analysis tools
integrated to PDesigner.

4. PDESIGNER FRAMEWORK

PDesigner integrates several platform tools in a

single Eclipse[12] based framework. Working with
platforms and components at Electronic System Level
(ESL)[7], the PDesigner user is able to develop software
and hardware projects concurrently using virtual
platforms. They enable a fast simulation, exploration and
validation of MPSoC projects.

All the components used to model the platforms are
stored in a dynamic library that allows the insertion and
removal of IPs distributed in the IP-XACT 1.2 standard.
Those components can be described in different
abstraction levels using SystemC TLM[8] and be
modeled and inserted in the library by the user. The user
access the component library using the palette, selecting
any component to add to his/her platform design.

Beyond a graphical editor, also provided by others
platform modeling frameworks, the PDesigner focus on

connection transparency. The connection between
components is done automatically when the user selects
the start and end point of the connection. Connection
points are represented by master and slave interfaces and
are enabled by the protocol, abstracting signals.
Wrappers are used to enable the connection between
different protocol ports. In order to support automatic
component connection, wrappers must exist in the
PDesigner component library. The framework recognizes
the interface and protocol of each component to allow the
connection and configure it. In case of different
protocols, an appropriate wrapper is automatically
inserted to the platform to allow the connection.

One advantage of PDesigner is that it supports the
automatic connection and simulation between
components at different abstraction levels. This feature
allows the designer to balance the trade-off between
simulation performance and accuracy.

4.1. Views

The PDesigner offers specific views to allow a better

visualization and manipulation of the components and
design information. Figure 2 shows the views that
composes the PDesigner platform modeling plugin.

Figure 2 PDesigner Framework

Platforms are graphically modeled at a Graphical
Editor called PEditor. The Platform View, a non editable
outline view, shows the miniature of the project. The
Instance View lists the instantiated components and can
be used to navigate through component instances and, in
addition, to configure them through an editable
Properties View.

The framework also contains a Console View, where
all compilation, simulation and analysis information are
displayed.

4.2. Architecture

PDesigner is a set of tools build on Eclipse IDE,

composed by modules implemented as plugins that
communicate among them through XML configuration

files. It is composed by five plugins as depicted in Figure
3. The three main plugins, PDLibrary (PDesigner
component library), PBuilder (platform modeling and
simulation plugin) and PArchC (processors modeling
plugin), are responsible by component and platform
modeling and library manipulation. It is also composed
by another plugins that implements analysis
(PCacheAnalyser PCacheEnergyAnalyser) and IP
distribution tools, all of them explained in the next
sections.

Figure 3 PDesigner Architecture

The framework was build compliant to three
standards: SystemC, that enables MPSoC modeling and
simulation; ArchC[14], used to describe, compile and
simulate processors; and SPIRIT used for IP distribution
and integration.

The PDesigner has an architecture divided in layers as
shown in Figure 3. The two main layers are formed by
the Eclipse framework, and Support tools represented by
the lower level.

The support layer is composed by languages,
standards and tools that enable platform modeling
project. SystemC and ArchC are used to describe
components and SystemC is used to describe, compile
and simulate platforms using gcc. All those tools and
components are integrated through XML configuration
files.

 The Eclipse layer is composed by the PDesigner
plugins: PArchC, PBuilder, PDLibrary,
PCacheAnalyzer[9] and PCacheEnergyAnalyzer. The
PArchC does not communicate directly with the
PBuilder, only through the PDLibrary. These two form
the base for the PBuilder, where the other plugins are
added above, as PCacheAnalyzer and
PCacheEnergyAnalyzer.

5. PDESIGNER ANALYSIS PLUGINS

PDesigner is also focused on platform analysis as a

way to help the designer to decide the better architecture
for the system. The analysis tools use the PBuilder as a
source of information to generate its data and graphics.

One of the main focus on embedded system is the
performance, that can be obtained through the use of
specific application processors, parallelism and
improving the communication speed between the devices
that compose the platform. Another important way to
improve the system performance is through the use of
cache memories.

Based on this fact, PDesigner provides two analysis
plugins for cache analysis. The PCacheAnalyser plugin
provides caches miss an hit rates. The
PCacheEnergyAnalyser provides cache energy
consumption estimation. They all run at simulation time
and generates charts (Figure 4) to show the desired
information for more than one cache configuration,
showing to the designer the best choice he/she can have.

Figure 4 PCacheAnalyzer and PCacheEnergyAnalyzer Plugins

charts

6. IP DISTRIBUTION TOOL

An IP distribution tool, called IPZip[10], is integrated

to PDesigner environment. It generates, semi-
automatically, the SPIRIT IP-XACT 1.2 distribution
package Thus, enabling SystemC TLM developers to
distribute their IPs in a manner that they can be reused
automatically in a SoC modeling environment.

The IPZip is based on wizards that create IP Cores
distribution package in zip format using a graphical
framework, allowing the designer to create it in an easy
and transparent way. The generated zip file is composed
by the components source files and the component
description in IPZip SPIRIT standard, that can be used
for design tools as PDesigner.

The distribution files are composed by information
about the vendor, component structure and configuration.
Vendor information includes the vendor and author
names. The component is described by its ports,
parameters, source files and abstraction levels and also
includes additional information about version and
description. Configuration information is composed by
how to initialize and use the component, including the
constructor, connection and initialize functions structure.

7. CASE STUDY

The PDesigner framework was validated using diverse

configurations for a dual MIPS platform distributed for
ArchC 2.0. The initial configuration consisted of two
MIPS processors (P1 and P2) connected to the generic
SystemC SimpleBus, making use of only one memory,
for data and instructions. This platform was simulated
with a FFT (Fast Fourier Transform) application, from
Mibench [11], where one of the processors generates the
Fourier transformed of a sequence of signals and the
other gets the inverse transformed one, established in the
results of the first one. This initial platform was modified
for the configurations listed in Table 1, using it to explore
some possible architectures to discover the best one to
run the application using the results of the simulation as
an input to define the best architecture.

P1 P2

2 powerpc , s imple bus , memory 67,17 97,16 45,88

2 mips , amba (c loc k 5ns), memory 67,51 109,48 44,88

2 mips , g reen bus , memory 111,01 189,83 25,62

2 mips , amba (c loc k 5ns), memory, c aches 125,53 164,48 29,87

2 mips , g reen bus , memory, c aches 125,64 214,84 23,91

2 s parc v8 amba (c loc k 5ns), memory, c aches 213,45 294,02 12,65

2 s parc v8, g reen bus , memory, c ac hes 289,52 495,74 12,44

2 powerpc amba (c loc k 5ns), memory, c aches 200,97 261,05 16,44

2 powerpc , g reen bus , memory, c aches 226,39 387,21 15,44

S imulation S peed
(K ins t/s)P latform Architec ture

S imulation
T ime (s)

Table 1 Platform Simulation Results

Using the results, the designer can define the
architecture, components and configuration to be used
based on the non functional requirements, in this case
performance. After deciding that the platform will have
cache memories, the designer can also analyze the best
cache configuration to be used, based on miss/hit rates
and energy consumption.

8. CONCLUSIONS

In this paper it has been presented the PDesigner

framework, a platform based design tool, which allows
MPSoC modeling, simulation and analysis.

The obtained results showed that the PDesigner
reached its main purpose, model MPSoCs platforms,
simulate it and give to the designer the capability to
analyze different platforms architectures rapidly
concerning cache energy consumption.

The paper has also presented the IPZip tool for the
distribution of SystemC TLM IPs. Using IPZip the
designer was able to include new IPs in the library based
on the new standard IP-XACT 1.2 from the SPIRIT
consortium. All the components of the library were
distributed using IPZip.

9. REFERENCES

[1] U. Kamath, R. Kaundim, “System-on-chip designs –
Strategy for success”, Wripo Technologies. June, 2001.

[2] A. Jerraya, H. Tenbunem, W. Wolf. “Multiprocessor
systems-on-chips”. Vol 1. Elsevier. 2005.

[3] http://www.systemc.org. SystemC Community.

[4] C. Lennard et al. Industrially proving the SPIRIT
consortium specifications for design chain integration. In the
Proceedings of the conference on Design, automation and test
in Europe DATE '06,pp 142-147, Munich, Germany, 2006

[5]http://www.coware.com/products/virtualplatform_creation.p
hp. CoWare: Virtual Platform Creation.

[6] ARP: ArchC Reference Platform. Available at :
<http://www.archc.org> “Platform” option.

[7] B. Bayley, G. Martin, A. Piziali. ESL Design and
Verification.

[8] TML available at http://www.systemc.org

[9] P. Viana, A. Gordon-Ross, E. Keogh, E. Barros, F. Vahid.
Configurable Cache Subsetting for Fast Cache Tunning. In
Proceedings of the 43rd Design Automation Conference DAC
2006.

[10] C. Araujo, E. Barros, M. Gomes, G. Araujo. Ipzip - An IP
Distribution Framework. In: IP/SoC, 2006, Grenoble. Proc. of
the IP/SoC 2006, 2006.

[11] http://www.eecs.umich.edu/mibench/index.html. Mibench

[12] http://www.eclipse.org. Eclipse Open Source Community.

[13] http://www.archc.org. The ArchC Resource Center.

[14] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C.
Araujo, E. Barros, The ArchC architecture description language
and tools. International Journal of Parallel Programming. Vol.
33, No. 5, out, 2005

