
ANALYSIS AND VALIDATION OF 8 POINT RADIX-2 TIME DECIMATION FFT

ALGORITHM

Rafael Mallmann, Fernanda Kastensmidt

rafael-mallmann@uergs.edu.br, fglima@inf.ufrgs.br

Engenharia em Sistemas Digitais – UERGS

Estrada Santa Maria, 2300 – 92500-000 – Bairro Ramada – Guaíba – RS – Brazil

ABSTRACT

Here we present a pipelined implementation of 8 point

radix-2 time decimation FFT algorithm to solve the

Discrete Fourier Transform (DFT). The main goals of this

paper are to discuss this FFT algorithm and design a

digital circuit that leads to its solving. The project

documentation consists in a datapath, an ASM flowchart

and a finite state machine. Thus, software simulation can

provide the DFT calculus in 52 clock cycles and one

butterfly in 4 clock cycles.

1. INTRODUCTION

The FFT (Fast Fourier Transform) is used in digital

systems, allowing a fast DFT calculation. Many devices

that use digital signals (such as digital cameras, ADSL

modems, mp3 players) have specific modules to make

this calculation. With the advance of these systems we

need dedicated hardware circuits that can even more solve

that transform.

There are some ways to calculate the DFT, such as

solving simultaneous linear equations or the correlation

method. The Fast Fourier Transform (FFT) is another

method for calculating the DFT. While it produces the

same result as the other approaches, it is incredibly more

efficient, often reducing the computation time by

hundreds [2].

Thus, FFT is an efficient algorithm to compute the

DFT and IDFT (inverse). The FFT is of great importance

to a wide variety of applications, from digital signal

processing and solving partial differential equations to

algorithms for quickly multiplying large integers [1].

On the other hand, the development of embebed

system has resulted in a tremendous potential for

designing dedicated hardware for FFT calculus. This

paper shows an algorithm project and a hardware

implementation. Our approach uses 8 point radix-2 time

decimation FFT. The algorithm has been coded and

simulated in Scilab® [3]. After that, the circuit has been

coded in VHDL and simulated in ModelSim®.

2. OUR FFT APROACH

The FFT operates in three steps. First it decomposes

an N point time domain signal into N time domain

signals, each one composed of a single point. The second

step is to calculate the N frequency spectra corresponding

to these N time domain signals. Lastly, the N spectra are

synthesized into a single frequency spectrum [2].

The first algorithm step can be greatly simplified. The

decomposition is nothing more than a reordering of the

samples in the signal. The Figures 1 and 2 shows this

process called Bit Reversal. The second step is also very

simple. The frequency spectrum of 1 point signal is equal

to itself. This means that nothing is required to do this

step [3].

Figure 1 - 8-point time domain decomposing.

Figure 2 – Bit Reversal.

Now we describe the last computational step, the most

difficult one. This step is to combine the N frequency

spectra in the exact reverse order that the time domain

decomposition took place. This is where the algorithm

gets confused. Unfortunately, the bit reversal shortcut is

not applicable, and we must go back one stage at a time.

In the first stage, 8 frequency spectra (1 point each) are

synthesized into 4 frequency spectra (2 points each). In

the second stage, the 4 frequency spectra (2 points each)

are synthesized into 2 frequency spectra (4 points each),

and the last stage results are the output of the FFT, a 8

point frequency spectrum.

To synthesize the frequency spectra we introduce the

simple flow diagram called butterfly (Figure 3). The

butterfly is the basic computational element of the FFT

which transforms two complex points into two other

complex points. The equations below show the butterfly

calculus:

k

k

k

BWnAB

BWnAA

N
jSin

N
CosWn

jYyB

jXxA

−=

+=

ΠΚ
−

ΠΚ
=

+=

+=

'

'

)
2

()
2

(

Substituting and separating in real part and imaginary

part:

])
2

([])
2

([

])
2

([])
2

([

])
2

([])
2

([

])
2

([])
2

([

N
IBSin

N
RBCosIAIB

N
IBSin

N
RBCosRARB

N
RBSin

N
IBCosIAIA

N
IBSin

N
RBCosRARA

ΠΚ
+

ΠΚ
−=

ΠΚ
−

ΠΚ
+=

ΠΚ
−

ΠΚ
−=

ΠΚ
+

ΠΚ
+=

Figure 3 – Butterfly.

Thus, 8 point radix-2 time decimation needs 3 stages

and 12 butterflies to give the output. Table 1 shows all the

butterflies and the k (twiddle factor) value in each stage.

Table 1 – Butterflies in each stage.

3. EXPERIMENTAL RESULTS

The test and the simulation have been designed in

Scilab®. We compared the 8 point test vectors of Scilab®

FFT functions with our own FFT script coded in Scilab®

language. Table 2 gives an overview of the results in each

stage using our FFT script. We show in this table the

address map using 16 words. The first eight are used to

allocate the real numbers and the last ones to allocate the

imaginary numbers.

4. HARDWARE IMPLEMENTATION

We designed the FFT hardware using datapath and

control unit. Our circuit uses 8 registers, 9 counters, 1

comparator (4 bits), 12 multiplexers, 4 demultiplexers, 1

adder (8 bits), 2 adders (32 bits), 1 multiplicator (32

bits), 1 RAM memory (16 words x. 32 bits), 1 ROM

memory (8 words x. 32 bits). Figure 4 describes the

butterfly architectures design.

 The RAM memory needs 16 words (8 to the real part

and other 8 to the imaginary part). The same memory

positions are used for the input and output. This efficient

use of memory is important for designing fast hardware to

calculate the FFT. The term in-place computation is used

to describe this memory usage. The ROM memory stores

the cossine and sine twiddle factor in IEEE 754 standard.

The FSM module uses 14 cycles.

Table 3 shows the pipeline approach used. We can

note that this table shows the simultaneous register

transfer in the same clock cycle. By the way, the butterfly

calculation needs 4 clock cycles and 57 cycles to

complete the FFT calculus. The non pipeline approach

needs 9 clock cicles to solve the butterfly and 108 cycles

to give the FFT output.

5. CONCLUSION

The 8 points radix-2 time decimation FFT has been

designed in VHDL and simulated in ModelSim®. The

FFT algorithm has been validated in Scilab®. We can

solve 8 complex points with a FFT in 57 clock cycles and

one butterfly in 4 cycles. This approach is more than 50%

efficient than the non pipeline approach.

The major FFT hardware implementation use 1024

point [3]. Finally, in future works we intend to design and

prototyping of a 1024 point radix-2 time decimation FFT

to compare with other FFT hardware implementations.

6. REFERENCES

[1] ÇETIN, Ediz; MORLING, Richard; KALE, Izzet. An

Integrated 256-point Complex FFT Processor for Real-time

Spectrum Analyses and Measurement. In: IEEE Proceedings of

Instrumentation and Measurement Technology Conference, vol.

1, pp. 96-101, Ottawa, Canada, May 1997.

[2] SMITH, Steven W. The Scientist and Engineer's Guide to

Digital Signal Processing. San Diego: California Techinical

Publishing, 1999.

[3] Baas, Bevan M. An Approach to Low-Power, High-

Performance, Fast Fourier Transform Processor Design. In:

IEEE Journal of Solid-State Circuits, March 1999, pp. 380-387.

[4] WESTE, N.; BICKERSTAFF, M.; ARIVOLI, T.; RYAN,

P.; DALTON, J.; SKELLERN, D.; PERCIVAL, T. A 50 MHz

16-point FFT Processor for WLAN Applications. In: IEEE

Custom Integrated Circuits Conference, May 1997, pp. 457-

460.

 Stage 1 Stage 2 Stage 3

BTF(0,4) K=0 BTF(0,2) K=0 BTF(0,1) K=0

BTF(1,5) K=0 BTF(1,3) K=0 BTF(2,3) K=2

BTF(2,6) K=0 BTF(4,6) K=2 BTF(4,5) K=1

BTF(3,1) K=0 BTF(5,7) K=2 BTF(6,7) K=3

Address

(Re ; Im)

Input

(Re ; Im)

Output Stage 1

(Re ; Im)

Output Stage 2

(Re ; Im)

Output Stage 3

(Re ; Im)

Bit Reversal

(Re ; Im)

0000 ; 1000 -1 ; 0 -3 ; 0 -2.5 ; 0 0 ; 0 0 ; 0

0001 ; 1001 1 ; 0 -0.5 ; 0 2.5 ; 0 -5 ; 0 2.06 ; 4.97

0010 ; 1010 1.5 ; 0 0.5 ; 0 -3.5 ; 0 -3.5 ; 3.5 -3.5 ; 3.5

0011 ; 1011 2 ; 0 3 ; 0 -3.5 ; 0 -3.5 ; -3.5 -0,60 ; 0.02

0100 ; 1100 -2 ; 0 1 ; 0 1 ; 2.5 2.06 ; -4.97 -5 ; 0

0101 ; 1101 -1.5 ; 0 2.5 ; 0 2,5 ; -1 -0.06 ; -0.02 -0,06 ; -0.02

0110 ; 1110 -1 ; 0 2.5 ; 0 1 ; 2.5 -0.06 ; 0.02 -3.5 ; -3.5

0111 ; 1111 1 ; 0 1 ; 0 2.5 ; 1 2.06 ; 4.97 2,06 ; 4.97

Table 2 – FFT result in each stage using a test vector.

Cycle RAM Read ROM Read MUL ADD1 ADD2 RAM Write

0 RB cos(w) M4<=RB*sin(w) (pre.) S1 <= M1–M2 (pre.) RAO<= RA + S0 (pre.) IBO

1 IB sin(w) M1<=RB*cos(w) S2 <= M3 - M4 (pre.) RBO<= RA - S1 (pre.) RAO (pre.)

2 RA cos(w) M2<=IB*sin(w) S3 <= M3 + M4 (pre.) IAO <= IA + S2 (pre.) RBO (pre.)

3 IA sin(w) M3<=IB*cos(w) S0 <= M1 + M2 IBO <=IA -S3 (pre.) IAO (pre.)

0 RB (next) cos(w) M4<=RB*sin(w) S1 <= M1 - M2 RAO <=RA+S0 IBO (pre.)

1 IB (next) sin(w) M1<=RB*cos(w) (next) S2 <= M3 – M4 RBO <=RA – S1 RAO

2 RA (next) cos(w) M2<=IB*sin(w) (next) S3 <= M3 + M4 IAO <=IA + S2 RBO

3 IA (next) sin(w) M3<=IB*cos(w) (next) S0 <= M1 + M2 (next) IBO <=IA –S3 IAO

0 RB (next) cos(w) MUL4<=RB*sin(w) (next) S1 <= M1 - M2 (next) RAO <=RA + S0 (next) IBO

Table 3 – Register transfer using pipeline.

Figure 4 – Butterfly datapath.

