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ABSTRACT 

 

This paper discusses two linked subjects. The first one 

is the concept of equivalence classes of logic functions. 

An algorithm that lists all possible classes for logic 

functions with a certain number of inputs is conceived. 

Secondly, a brief analysis of digital circuits mapped by 

library-free and library-based technology mapping tools is 

presented, where the main goal is to identify equivalence 

classes and occurrence of cells in the circuits generated 

by them. To do that, a tool is also proposed. This tool 

may reduce the set of cells, grouping functionally 

equivalent cells and choosing one to represent the group. 

The preliminary results show a strong equivalence 

presence in library-free mapping processes. 

 

1. INTRODUCTION 

 

Boolean functions are the pedestal for the design of 

modern digital circuits. Basically, any logic function may 

be translated in a transistor network that represents it in 

an electrical arrangement. These transistor networks 

compose the logic gates to form the digital circuit. For a 

given number of input variables there is a well-defined 

number of functions. This number is given by 2^(2^n), 

where n is the number of input variables [1]. According to 

this statement, the number of 2-input functions is 16, 3-

input functions is 256, 4-input functions is 65,536, 5-

input functions is 4,294,967,296, and so on. This 

exponential relationship turns the search space almost 

intractable if many operations need to be repeated in a set 

of functions with more than 4-inputs. In order to reduce 

the search space, the n-input functions can be classified 

into different classes (set of functions). These sets are 

known as equivalence classes, and they may be obtained 

through input permutation/negation as well as output 

negation. P-class, N-class, NP-class, PN-class, and NPN-

class are the possible reduced sets. These sets are 

composed by equivalent functions that represent different 

logic functions, but that have the same internal transistor 

networks arrangements (they are topologically identical). 

This approach can be used to implement and to evaluate 

logic cells and transistor networks without loss of 

generality. 

Another important point is related to the technology 

mapping strategy. Essentially, technology mapping tools 

can be classified in two groups: library-based and library-

free. Library-based tools are the ones that use a 

predefined and reduced set of cells to build the digital 

circuit. In other words, the circuit will be composed by 

logic cells that belong to a fixed library container. 

Alternatively, library-free tools are the ones that need an 

automatic cell generator to feed the technology mapping 

process. In these tools the set of cells that can be used are 

much more extensive.  

This work proposes two main discussions regarding 

classes of functions and technology mapping. First, it 

presents an algorithm to identify functions that belong to 

the same classes. Second, it presents a mechanism that is 

able to identify equivalence and occurrence of logic 

functions inside circuits mapped by technology mapping 

tools. 

The main contribution of this paper is to provide for 

the designer a fast and powerful way to analyze the 

characteristics and the quality of used cells in the 

technology mapping process. 

The remaining of this paper is organized as follow. 

Section 2 discusses the identification of logic function 

classes. Section 3 presents the proposed mechanism to 

evaluate the set of cells used to compose the mapped 

circuits. Finally, Section 4 presents the conclusions.  

 

2. LOGIC FUNCTION CLASSES 

 

2.1 Logic function 

 

In a truth table, for a certain number of inputs (n), 

there are 2^n lines (minterms). Each output consists of 

choosing a bit for each minterm. Therefore, there are 

2^(2^n) possibilities of outputs. Each one is a boolean 

function, a binary number with 2^n bits. For n = 2, e.g. 

there are 4 minterms and 16 logic functions, as shown in 

Table 1. 

 

Table 1: Some functions for n = 2 inputs. 

AB f0 f1 f2 f3 f4 ... f12 f13 f14 f15 

00 0 1 0 1 0 ... 0 1 0 1 

01 0 0 1 1 0 ... 0 0 1 1 

10 0 0 0 0 1 ... 1 1 1 1 

11 0 0 0 0 0 ... 1 1 1 1 

 

 



2.2 Equivalence classes 

 

If n increases, the total space of functions will enlarge 

considerably. As mentioned before, in a cell with 3 

inputs, the number of possible functions equals to 256, 

and for 4 inputs, 65,536. To reduce these possibilities, the 

concept of classes of equivalent functions is introduced 

[3]. A class is a subset of logically equivalent functions as 

a result of a specific operation, or their combination.  

A possible operation to obtain equivalent functions is 

the permutation of inputs. Table 2 presents an example of 

that operation. It is noticed that the minterms 01 and 10 

changed the position in both tables. Two functions are 

equivalent if for each minterm the output is the same. 

Thus, f2 and f4 are equivalent by permutation, and can be 

gathered in a P-class. 

Another operation to build equivalent functions is the 

negation of inputs. In a similar way, Table 3 shows an 

example of obtaining an N-class of 4 equivalent functions 

(f1, f2, f4 and f8) from this operation. 

The last operation here used is the negation of the 

output. Table 4 displays and example of this operation. 

The three operations can be combined. For instance, 

NP-classes are obtained after combining permutation and 

negation of inputs. An NP-class may have more functions 

than several P- or N-classes. Therefore, the number of 

NP-classes is smaller. 

There are still PN-classes, where permutation of 

inputs and negation of outputs are executed. Finally, the 

most reduced group of classes studied is the set of NPN-

classes, where all operations are performed. 

 

Table 2: Two P-equivalent functions. 

AB f2 BA f4 

00 0 00 0 

01 1 10 0 

10 0 01 1 

11 0 11 0 

 

Table 3: Four N-equivalent functions. 

AB  f1 BA  f2 BA  f4 BA  f8 

00 1 01 0 10 0 11 0 

01 0 00 1 11 0 10 0 

10 0 11 0 00 1 01 0 

11 0 10 0 01 0 00 1 

 

Table 4: Two equivalent functions after output negation. 

AB f9 f6 

00 1 0 

01 0 1 

10 0 1 

11 1 0 

 

2.2 Finding equivalence classes 

 

The interest of the first part of this work was to list all 

classes (P, N, NP or NPN) for a known number of inputs. 

To do that, a function of each class was chosen to 

represent it. The chosen function was, for convenience, 

the lowest function of each class; ‘lowest function’, here, 

means the function fk, where k is the smallest value 

observed in the class. 

Fig. 1 shows a general procedure, in a C-like code, of 

the idea described above. Going through all 2^2^n 

functions using the variable f, in case the lowest function 

of a class is found, it is printed. 

The procedure isLowestFun, illustrated in Fig. 1, 

should be in agreement with the type of desired operation. 

In case it is wanted to know if f is the lowest function 

after all possible input permutations, this procedure 

resembles that in Fig. 2. 

Basically, the lowest function is searched in the main 

loop. There are n! different combinations for n inputs. For 

each one, the procedure kth_permutation returns a 

logic function always obtained from a different 

permutation. In each cycle, if the found function is the 

lowest at the moment, it is stored in lower. At the end, if 

lower is not lower than f, it means that f is the lowest 

function of the class. 

An example of this reasoning is that of Table 2. There 

are only two possible permutations for n = 2. If f = f2, the 

result of kth_permutation is f4, and f2 will be 

printed. Later, when f equals to f4, a lower function will 

be found, obviously f2,, and f4 will not be printed. Hence, 

only one function per class is printed, which was the main 

goal. 

If the goal is to obtain the lowest function of an N-

class, then isLowestFun will be built in a similar way, 

but the number of search cycles will be 2^n, and the 

search procedure, kth_negation. These changes are 

shown in Fig. 3. For n = 2, there are 2^2 = 4 possible 

negations of the inputs. According to Table 3 and the 

algorithm of Fig. 3, if f equals to f1, f2, f4 or f8, only when 

f = f1 the procedure print will be called. 

 

void list(int n) { 
  for (int f = 0 ; f < 2^(2^(n)) ; f++) 
    if (isLowestFun(f)) 
      print(f); 
} 

Figure 1: Listing one function per class. 

 

int isLowestFun(long f) { 
  long f' , lower; 
  lower = f; 
  for (int i = 0 ; i < n! ; i++) { 
    f' = kth_permutation(f , i); 
    if (f' < lower) 
      lower = f'; 
  } 
  if (lower < f) 
    return 0; 
  else 
    return 1; 
} 

Figure 2: Obtaining P-classes. 



int isLowestFun(long f) { 
  ... 
  for (int i = 0 ; i < 2^n ; i++) { 
    f' = kth_negation(f , i); 
    if (f' < lower) 
      lower = f'; 
    } ... 
} 

Figure 3: Changes in isLowestFun procedure for 

obtaining N-classes. 

 

Fig. 4 shows the necessary changes in 

isLowestFun for the accomplishment of permutation 

and negation operations simultaneously. Now the number 

of cycles is n! × 2^n.  

At last, when the purpose is to find NPN-classes, each 

obtained function has to be negated and, in a similar way, 

verified if the new function is the lowest one of the whole 

class. To do that, some code is added to the procedure of 

Fig. 4, resulting in the procedure of Fig. 5. Procedure 

neg() returns a logic function replacing 0’s by 1’s, like 

it was done in Table 4. 

 

int isLowestFun(long f) { 
  ... 
  for (int i = 0 ; i < n! ; i++) 
    for (int j = 0 ; j < 2^n ; j++) { 
      f' = kth_permutation(f  , i); 
      f' =    kth_negation(f' , j); 
      if (f' < lower) 
        lower = f'; 
    }  ... 
} 

Figure 4: Obtaining NP-classes. 

 

int isLowestFun(long f) { 
  ... 
  for (int i = 0 ; i < n! ; i++) 
    for (int j = 0 ; j < 2^n ; j++) { 
      f' = kth_permutation(f  , i); 
      f' =    kth_negation(f' , j); 
      if (f' < lower) 
        lower = f'; 
      if (neg(f') < lower) 
        lower = neg(f'); 
    }  ... 
} 

Figure 5: Changes in isLowestFun procedure for 

obtaining NPN-classes. 

 

Some remarks should be made. For simplicity, the 

algorithms are more illustrative and less realistic than the 

used ones. Improvements are visible and necessary. 

Besides, the possible number of logic functions and 

results turn then unfeasible for high values of n. The 

results were obtained for an n up to 5 inputs, according to 

Table 5. They are in agreement with [2]. 

With the developed algorithms, it is possible to 

compare two functions and to verify if they are logically 

equivalent, as explained in the next section. 

 

Table 5: Number of inputs vs. number of classes. 

# of classes 
n 

# of  

functions P N NP NPN 
2 16 12 7 6 4 

3 256 80 46 22 14 

4 65.536 3.984 4.336 402 222 

5 4.294.967.296 37.333.248 134.281.216 1.228.158 616.126 

 

 

3. EVALUATION OF SET OF CELLS 

 

The second part of this work was implemented in two 

stages. In the first one, a list of cells obtained from a 

library-free mapping tool, and defined by their logical 

equations, is taken into account. Firstly, these equations 

are converted to the format of logic functions (in 

hexadecimal). After that, these functions are used as 

inputs to a developed tool, called LEVE (Logical 

Equivalence VErifier), written in C, which analyzes the 

functions, counts the different types of cells and the 

occurrence of each one of them, generating a report. In 

the second moment, LEVE tool uses the concepts of the 

developed algorithms to verify if two or more functions 

belong to the same equivalency class. The flow is 

presented in Fig. 6. 

 

 
Figure 6: LEVE tool flow, inputs and outputs. 

 

3.1 Library container evaluation 

 

Technology mapping is a process by which a set of 

optimized logic equations is turned into a design 

implementation in terms of a cell netlist. A standard cell 

technology uses a pre-characterized library, while a 

library-free technology uses a virtual library based on on-

the-fly cell generation. SIS [4] is an example of a library-

based tool. On the other hand, ELIS [5] and VIRMA [6] 

tools are examples of library-free tools. 

A standard cell library is typically restricted to a few 

cells. However, the flexibility of the library-free cell 

generation may produce several distinct cells. Besides, a 

high occurrence of cells can implicate a worse 

performance in area and in delay. 

 

 



3.2 Equivalence in a set of cells 

 

Library-free tools do not explore the fact that several 

cell types can own some kind of logic equivalence studied 

in the previous section. That approach is useful to reduce 

the size of the list of generated cells, choosing one among 

the functionally equivalent cells to belong to the final 

circuit. 

The algorithm for obtaining the class of a function is 

shown in Fig. 7. It looks like the one presented in Fig. 2, 

with the difference that theLowestFun returns the 

lowest function of a class. Here only the permutation 

operation is presented, but the other algorithms follow 

strictly the same way. 

To verify if two or more functions are equivalent the 

procedure is the following: given two functions fa and fb, 

if theLowestFun returns fk, the three belong to the 

same class. The set Ak = {fa , fb} contains, thus, 

functionally equivalent cells. This set is increased as new 

functions equivalent to fk are found. A specific cell of this 

set can be chosen to represent it. Therefore, the number of 

different cells used in an implementation can be smaller, 

the greater are the sets. For the logical/physical 

obtainment of the not chosen cells, it is enough to perform 

the necessary operations on the chosen ones. 

The limitation of the algorithm is the number of inputs 

(n). The greatest difficulty found was the time expensed 

in the algorithm execution. For cells of 9 inputs, the 

average time to find its NPN-class was of the order of 40 

seconds, and for 10 inputs, around 32 minutes. This 

happens mainly because the search space (n! × 2^n) is 

increased in 2(n+1) when n is incremented. Therefore, the 

algorithm was limited for up to 10 inputs. 

 

long theLowestFun(long f) { 
  long f' , lowest; 
  lowest = f; 
  for (int i = 0 ; i < n! ; i++) { 
    f' = kth_permutation(f , i); 
    if (f' < lowest) 
      lowest = f'; 
  } 
  return lowest; 
} 

Figure 7: Obtaining the lowest function of a class. 

  

3.3 Some results 

 

Table 6 presents the results for a group of well-known 

benchmarks. Three circuits were mapped, each one, in 

three different tools. The third column shows the total 

counting of cells after the mapping. Next, the number of 

distinct cells found is presented. The following columns 

show the decrease of the on-the-fly generated library after 

verification of equivalence classes P, NP and NPN. 

Some conclusions can be given by looking the Table 

6. First of all, SIS-mapped circuits did not present 

permutation equivalences, and in the other tools they 

occur often. It happens because library-free processes 

may not verify permutations while they analyze the 

circuit. Finally, as it was seen to come, NPN verification 

returned the most reduced group of cells. 

 

Table 6: LEVE tool results for ISCAS benchmarks. 

# of cells after 

equivalence  ISCAS 

Circuit 

Tech 

mapping 

tool 

# of 

cells 

# of 

distinct 

cells P NP NPN 

SIS 174 8 8 8 6 

ELIS 162 6 5 5 4 C499 

VIRMA 212 23 15 10 9 

SIS 346 11 11 11 8 

ELIS 244 16 15 13 10 C1908 

VIRMA 187 81 57 28 28 

SIS 500 34 34 34 24 

ELIS 473 46 38 38 23 C3540 

VIRMA 545 164 131 69 65 

 

Some aspects should be considered for the 

observation of the results. On one hand, permutation is an 

operation that does not modify the internal structure of 

the circuit, but the decrease in the number of cells is not 

so evident. On the other hand, reduction using negations 

in inputs and/or in output would add inverters to the 

circuit, in spite of a good reduction of cells. It is 

necessary to affirm that the eventual inverters were not 

considered in the total number of cells. 

 

4. CONCLUSIONS 

 

This paper discussed the equivalence of classes of 

logic functions and its use in the context of technology 

mapping. Some choices of equivalence were presented, 

and choosing one of them depends on what is desired in 

the final circuit. Future work will include a better report 

generation and an investigation of the best cells to be 

chosen to compose the final circuit. 
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