
LEE: A LEAKAGE ESTIMATION ENVIRONMENT

1
Mateus V. Gomes,

1
Fábio R. Pereira,

1
Leomar S. Rosa Jr,

2
Paulo Butzen,

2
André I. Reis,

1
Renato P. Ribas

1Instituto de Informática – UFRGS, Porto Alegre, Brazil

2
Nangate Inc., Menlo Park, CA, Herlev, Denmark

{mvngomes, frpereira, leomarjr, rpribas@inf.ufrgs.br}, {pbu, are}@nangate.com

ABSTRACT

Power consumption is currently an important issue in

digital circuit design. Minimal leakage dissipation

represents a key factor for emerging downscaling

transistor technologies. Leakage Estimation Environment

(LEE) tool, presented herein, allows fast subthreshold

leakage power estimation in digital CMOS circuits, by

using logic and probabilistic evaluations of signals

through the circuit. The software development and

experimental results are discussed in this paper.

1. INTRODUCTION

Aggressive scaling of CMOS devices has resulted in

higher integration density and improved performance.

Simultaneously, static power consumption has become an

important issue due to emergent mobile products. Standby

currents are increasing significantly in advanced

submicron and sub-100nm technologies, where threshold

voltage and gate oxide thickness of transistors tend to

reduce. As a consequence, great effort has been

concentrated in understanding the leakage mechanisms,

modeling their behavior and developing design

techniques for static power saving [1]-[6].

Leakage power estimation is absolutely necessary for

designing low-static-power digital circuits. Among

different leakage mechanisms, two major ones can be

identified: subthreshold leakage and gate oxide leakage.

Several leakage prediction methods have been reported in

the literature [2]-[6]. Gu et al. in [2] and Cheng et al. in

[3] estimate subthreshold leakage current by using

analytical models, while Yang et al. in [4] includes the

gate leakage component in the analysis. These models are

usually computer timing consuming in huge circuits due to

the analytical method complexity.

A fast estimation of subthreshold leakage model is

presented in [6]. This work predicts subthreshold current

based on the device electrical conductance association.

Gate leakage current is also fast predicted based on the

transistor bias condition, as reported in [5]-[6]. These

approaches are not as accurate as complex analytical

models, but they provide leakage power values useful to be

used as a cost data in technology mapping procedure when

low power system is addressed.

This work presents the LEE tool for the circuit-level

leakage analysis. Digital circuits, described through

Boolean equations of cells and their connectivity, are

evaluated according to their functionality in order to

determine the logic values and the signal probabilities of

internal and output nodes. The analysis of individual cells

is provided by specific methods, not treated herein. In

other words, the proposed work offers a mechanism

useful to evaluate logic cell leakage models at circuit-

level.

2. ENVIRONMENT DESCRIPTION

The tool receives as entry data the circuit description

in Boolean equation format, as illustrated in Fig. 1. It is

then loaded into the data structure, which consists of a set

of logic cells, with their respective equations, inputs and

outputs, as well as a hash map of the input variables with

the corresponding logic values and signal probability.

(a)

INORDER = a b c d e;

OUTORDER = out1 out2;

i1 = !(c * a);

i2 = !(d * c);

i3 = !(b * i2);

out1 = !(i3 * i1);

i4 = !(e * i2);

out2 = !(i3 * i4);

(b)

Figure 1 – ‘C17’ ISCAS benchmark circuit description:

(a) schematic; (b) equation format.

When the circuit is loaded, all input logic values are

set to ‘0’ logic value, and the input data probabilities are

set to 0.5 as default value. It is possible to change all of

them at a time or only in a specific pin. After setting the

input data condition, the following tasks are performed:

functional behavior, signal occurrence probability and

cell leakage evaluation.

The functional evaluation of the circuit generates the

logic values of the internal nodes according to the each

logic cell functionality. The probability evaluation, in

turn, provides the signal value probability in each circuit

node from the primary input definition. Finally, the

leakage evaluation applies a certain leakage estimation

procedure to each individual cell, according to the cell

input condition. Note that, the standby currents are state

dependents, i.e., they present different values depending

on the input signals.

The Leakage Evaluation Environment – LEE tool was

developed in Java platform. The main features are the

independency to the cell-level leakage model, and the

circuit analysis using static logic values and signal

probability.

3. CIRCUIT BEHAVIOR EVALUATION

The circuit evaluation is performed through a

straightforward and recursive algorithm. The pseudo-code

is shown in Fig. 2. The cell_set list holds the available

cells for evaluation. The extraction of the logic behavior

of each cell is then executed. After that, the signals are

propagated throughout the entire circuit, from the primary

inputs, according to the functionality of each logic gate.

In order to determine the complete computing of the logic

values in the circuit nodes, each cell has a counter, named

in_degree, corresponding to its input number. When a

value for one of its inputs is known, this counter is

decremented. If it reaches ‘0’, it means that all its input

pins have been defined, and then such cell will be

considered in the next iteration, being included in the

next_set list. Otherwise, some input data is missing to

define the output value and the cell is not evaluated yet.

Evaluate (list<cells> cell_set) {

 if cell_set is empty return;

 for each cell c in cell_set {

 evaluate c;

 for each cell n in netlists© {

 define_input(n, c.output);

 n.in_degree--;

 if n.in_degree == 0 add n to next_set;

 }

 }

 evaluate(next_set);

}

Figure 2 - Pseudo-code for circuit evaluation.

3.1. Logic evaluation

Given a cell expression and the logic values present at

its input pins, the output value is obtained by using a

BDD (Binary Decision Diagram)-based tool, developed

by the team. This graph-like structure allows efficient

logic evaluation.

3.2. Probability evaluation

In order to evaluate the probability of the logic value

‘1’ in internal and output signals, three basic rules are

followed: (1) the AND logic probability is obtained

through the multiplication of the probabilities of all the

signals involved; (2) the OR logic probability is obtained

through the sum of the probabilities of all the signals

involved; (3) the NOT logic probability is the

complement of the probability of the input. Fig. 3

illustrates these rules. Their combination allows the

probability estimation for all other gates, since the same

input variable is not present in the Boolean equation more

than once.

3.3. Leakage estimation

For each cell it is generated a transistor network

according to the logic style chosen, e.g. conventional

static CMOS, PTL and so on, since the leakage evaluation

depends on the device arrangement. The circuit netlist

together with the evaluated input vector allows both

subthreshold and gate oxide leakage current predictions.

The information of the minimum and maximum leakage

values is stored, as well as the weighted average value.

The weights applied correspond to the probability of each

input vector to occur. Since the probability for each input

signal is known, it is possible to determine the

probabilities for each vector in the truth table of the cell.

Making so, it is then possible to determine the minimum,

maximum and average standby currents in the entire

circuit.

Figure 3 – Signal probability of logic gates.

4. SPICE CORRELATION

The simple C17 ISCAS benchmark circuit, depicted in

Fig. 1a, is presented herein to illustrate the use of the LEE

tool. The number at each signal indicates the iteration at

which it was evaluated. An extraction of the report

provided by the tool and containing the results is shown

in Fig. 4

In order to validate the estimation method, the tool

provides also the possibility to save individual cell netlist

together with all possible input vectors. Thus, a Spice

simulation is made easy and fast for correlation.

Hspice scripts are being developed in the sense to

calculate individual cell leakage and the statistical

average leakage of huge circuits, when all primary input

combinations cannot be verified due to the number of

signals.

<Inputs>

a logic [1] prob [0.5]

b logic [1] prob [0.5]

…

N logic [0] prob [0.5]

Total input #: N

<Outputs>

out1 logic [1] prob [0.53125]

out2 logic [1] prob [0.609375]

…

outM logic [1] prob [value]

Total output #: M

<Cell X1>

 Inputs: {i2=1, b=1}

 Output value: 0

 Output probability: 0.625

 Normalized leakage: 4.0

 Minimum leakage: 1.0

 Maximum leakage: 4.0

 Average leakage: 0.65625

…

<Cell Xi>

 Inputs: {a=1, c=0}

 Output value: 1

 Output probability: 0.75

 Normalized leakage: 2.5

 Minimum leakage: 1.0

 Maximum leakage: 4.0

 Average leakage: 0.5625

Total cell #: i

Lower bound circuit leakage: 6.0

Upper bound circuit leakage: 24.0

Average circuit leakage: 3.8

Figure 4 – Example of report provided by the tool.

5. CONCLUSIONS

This paper presented a tool which allows the leakage

estimation at circuit level for steady state values, as well

as according to the signal occurrence probability. It is

suitable for different leakage prediction models which

evaluate such a kind of consumption at cell level. In

future works, the search of input vector that represents the

minimum leakage dissipation in a circuit can be improved

by this tool.

6. REFERENCES

[1] K. Roy, S. Mukhopadhyay and H. M.-Meimand, “Leakage

Current Mechanisms and Leakage Reduction Techniques in

Deep-Submicrometer CMOS Circuits”, Proceedings of the

IEEE, vol. 91, no. 2, Feb. 2003, pp. 302-327.

[2] R. X. Gu and M. I. Elmasry, “Power Distribution Analysis

and Optimization of Deep Submicron CMOS Digital

Circuit”, IEEE JSSC, vol.31, no.5, May 1996, pp.707-713.

[3] Z. Cheng, M. Johnson, L. Wei and K. Roy, “Estimation of

Standby Leakage Power in CMOS Circuits Considering

Accurate Modeling of Transistor Stacks”, Proc. ISLPED,

Aug. 1998, pp. 239-244.

[4] S. Yang, W. Wolf, N. Vijaykrishnan, Y. Xie and W. Wang,

“Accurate Stacking Effect Macro-modeling of Leakage

Power in Sub-100nm Circuits”, Proc. Int. Conf. on VLSI

Design, Jan. 2005, pp. 165-170.

[5] D. Lee, W. Kwong, D. Blaauw and D. Sylvester, “Analysis

and Minimization Techniques for Total Leakage

Considering Gate Oxide Leakage”, Proc. DAC, June 2003,

pp.175-180.

[6] P. Butzen, R. Mancuso, L. Rosa Jr., A. Reis, R. Ribas,

“Leakage Behavior in CMOS and PTL Logic Styles for Logic

Synthesis Orientation”, Proc. IWLS, May 2007.

