
A GRAPH-BASED SOLUTION FOR DUAL

TRANSISTOR NETWORK GENERATION

¹Vinicius Callegaro, ¹Leomar S. da Rosa Jr, ²André I. Reis, ¹Renato P. Ribas

¹Instituto de Informática – UFRGS, Porto Alegre, Brazil

²Nangate Inc., Sunnyvale, CA, USA

{vcallegaro, leomarjr, rpribas}@inf.ufrgs.br, are@nangate.com

ABSTRACT

Transistor network optimization is of special interest

for efficient digital circuit design. In this context, a graph-

based solution for dual-network generation is proposed.

The algorithm is able to generate series-parallel and

bridge topologies. Experimental results demonstrate

significant CMOS gate design improvement in terms of

the total number of transistors, when combining dual-

network generation presented here with BDD-based

technique.

1. INTRODUCTION

CMOS design is currently the most used and well

established logic style applied by the modern industry of

microelectronics. This standard, also known as

complementary series/parallel (denominated here as CSP)

logic style, is an arrangement of series and parallel

transistors in two separated logic planes: pull-up and pull-

down ones. Fig. 1 illustrates the CSP logic style. The

major advantage of the CSP logic is low sensitivity to

noise, good performance and low power consumption [1].

Figure 1 – Standard CMOS logic style (‘CSP’).

The transistor arrangement is built in a straightforward

two step procedure. In the first step, a given logic

function description, composed of AND and OR

operators, is translated into an equivalent elements

interconnection. To generate the pull-down NMOS plane,

all AND operations are treated as series interconnections,

while OR operations are treated as parallel associations.

In the second step, the dual logic plane is obtained

through a topologically complemented implementation,

where all series interconnections in the first logic plane

are converted to parallel interconnection in the other logic

plane. The same process is done for parallel

interconnections, resulting in series arrangements.

Remembering that the CMOS style provides a negate

logic function. Fig. 2a presents a transistor network from

a CSP logic style for the equation f = !(a*d + a*c*e +

b*e + b*c*d). It is possible to notice that the dual logic

plane is obtained directly from a series/parallel

complementary association.

(a)

(b)

Figure 2 – Function f = !(a*d + a*c*e + b*e + b*c*d),

(a) CSP logic style, (b) bridge-based arrangement.

Recent works have investigated and demonstrated that

different logic styles may deliver more efficient networks

[2-4]. Some of these works show that circuit area, circuit

delay, and circuit power consumption may be optimized if

alternative logic styles are used instead of standard

CMOS. In this context, some works explore the use of

bridge transistor arrangements in order to minimize the

transistor count in the circuits [5,6]. In such logic style,

non-series parallel arrangements are done, introducing

transistors that are neither in series nor in parallel with

others. Fig. 2b illustrates a bridge-based implementation

for the equation described before, where the transistors

controlled by variable ‘c’ are the responsible for a non-

series/parallel arrangement. The drawback for generating

this kind of network is that complementary series/parallel

operations cannot be used to obtain the dual plane, since

there are some transistors that are neither in series nor in

parallel with others. For that, it is necessary a dual-graph

approach in order to achieve the network construction [1].

This paper presents a methodology to automatically

generate dual logic planes for bridge-based arrangements.

The graph theory is briefly explained and the proposed

solution is presented to achieve two terminal dual

networks.

2. TRANSISTOR NETWORK TO MULTIGRAPH

A transistor network description, i.e. Spice netlist,

may be converted into a graph representation. In this

work it is done because graph structures are easier to

manipulate than Spice netlist textual descriptions. This

way, all transistors are converted to edges, and the nodes

of the network are converted to vertices. The Vdd/Gnd

and Output nodes are kept as special vertices (this

information is necessary in the proposed algorithm). In

the graph theory point-of-view, the correct term for the

graph obtained from this operation is multigraph.

The term multigraph refers to a graph in which

multiple edges between nodes are permitted. Some

references require that multigraph possess no graph loops

[7], while other ones explicitly allow them [8]. For the

purpose of this work, the multigraph will not possess

graph loops, because in transistor networks there is no

transistor connecting the same node. This situation would

be a short-circuit in the network.

Another important concept to be understood is related

to the graph planarity. A graph is planar if it can be drawn

in a plane without graph edges crossing. This

characteristic is required for the dual graph generation.

Only planar graphs may deliver a dual graph [7].

In the literature, some algorithms to generate dual

graph from a simple graph are available, as presented in

[7]. In this approach, the ‘exterior’ face is converted to a

single vertex in the dual graph. However, for the

electrical engineering purpose, the exterior face must be

considered as two vertices. For the purpose of this work

these vertices are called exterior vertices. This

assumption is necessary since electrical networks are

composed by two terminal nodes. Fig. 3a illustrates a

transistor network, and Fig. 3b shows a planar multigraph

obtained from this network and its two exterior vertices

dual graph (dotted lines).

In the case of generating a dual graph from a simple

graph, all edges joining to the vertex V1* (as illustrated in

Fig. 3b) should be redirected to vertex V2*. The vertex

V1* would be suppressed. Apart from that, it is important

to notice that a simple graph does not allow multiple

edges between two same vertices, like the edges joining

V1 and V3 in Fig. 3b.

Since simple graph and multigraph are not sufficient

to meet the requirements to generate a dual two terminal

transistor network, this structure of multigraph with two

exterior vertices is presented as an adequate solution.

(a)

(b)

Figure 3 – Transistor network (a), and equivalent

multigraph (b) representation and its dual (doted lines).

3. PROPOSED ALGORITHM

The input of the method is a Spice netlist description.

This description is translated into a multigraph

representation in order to be manipulated. The algorithm

to generate the dual graph is performed in three main

steps: compression, dual graph generation, and

decompression.

3.1. Compression

In the compression step, all multiple edges joining the

same two vertices (parallel edges) are merged in single

edges. In the same way, the edges connecting vertices

with 2-degree (series edges) are merged in single edges.

Notice that this merge operation causes the suppression of

the 2-degree vertex. This procedure is only allowed if the

vertex is not a special vertex (Vdd/Gnd and Output). It is

done until no edge compressions are observed. This step

is done to simplify the sequence of the algorithm. If the

original transistor network is a series/parallel

implementation, this compression will result in a graph

with only one edge. It means that it is not necessary to use

the next step to obtain the dual implementation, since the

solution is trivial (as presented before, through

series/parallel association). If the number of edges from

the resulting compressed graph is different from one, it

means the original transistor network is a non-

series/parallel implementation. So, the next step of this

algorithm is applied. Fig. 4b illustrates the graph

compression step over the input multigraph described in

Fig. 4a.

(a)

(b)

(c)

Figure 4 – (a) Input multigraph, (b) resulting simple graph

after compression, and (c) dual graph obtained by

applying the proposed algorithm.

3.2. Dual Graph Generation

At this point of the algorithm, all parallel edges were

suppressed through the compression step, resulting in a

simple graph. The dual graph generation consists in

following sub steps:

• Cycle Detection and Faces Identification: a cycle is a

closed walk in the graph, which is an alternating

sequence of vertices and edges, beginning and ending

at the same vertex. In this step, all cycles are

detected. The regions defined by the cycles in a

planar graph are referred as faces. The unbounded

face is called exterior face [7]. In Fig. 4b the region

defined by the vertices V1, V3 and V4 is a face, as

well as the region defined by V2, V3 and V4 is

another face. The ‘exterior’ face is the exterior region

defined by V1, V3, V2 and V4.

• Creating Exterior Vertices: two paths ([ab, c] and [f,

gh]), between the special vertices (V1 and V2),

traversing the original exterior face are identified.

These two paths define the boundary where the two

external vertices for the dual graph will be created. In

the graph theory this idea of two ‘exterior’ faces is

not described, but it is necessary because these

special vertices in the dual graph will be translated to

Vdd/Gnd and Output nodes in the dual transistor

network.

• Dual Creation: All faces in the graph that are not

‘exterior’ faces will receive a vertex. For two faces

having an edge ‘x’ in common, the corresponding

vertices are joined by an edge ‘x*’ crossing only this

edge ‘x’. This joining process is performed to all

faces in the graph. The dual graph will be the

collection of edges and vertices that were obtained

after all this procedure. This is shown in Fig. 4c.

3.3. Decompression

In the decompression step, all compressed edges in

the dual graph must be expanded. It is done performing

the following rules:

• All edges in the dual graph that were created from a

parallel compression in the original graph will be

expanded in a series way. This process will

reintroduce 2-degree vertices in the graph.

• All edges in the dual graph that were created from a

series compression in the original graph will be

expanded in a parallel way. This process will

transform the simple graph in a multigraph again.

Notice that the decompression is done using the

compression information stored in the first step of the

algorithm. This way, the correctness of the dual graph

expansion is guaranteed. The dual transistor network is

obtained by a simple mapping from the multigraph to a

Spice netlist.

4. RESULTS

The proposed algorithm was implemented in Java

language. To demonstrate the functionality of this

algorithm, a Spice netlist for the function

f=!(a*b*!e*f+a*b*h+a*c*e*g+a*!b*c*e+b*c*d*!e*f+b

*c*d*h+d*e*g+!b*d*e) was generated using the BDD-

based approach presented in [4], illustrated in Fig. 5a.

The pull-down NMOS plane was used as reference to

generate an alternative pull-up PMOS plane, according to

the dual graph principle, described in this work. The

result is observed in Fig. 5b.

The total transistor count is clearly minimized, since it

is possible to generate the dual-network from the input

transistor network plane that contains the smallest number

of elements. This obtained network is logically equivalent

to the original network generated by [4]. In this case, a

reduction of 26% in transistor count was verified.

(a)

(b)

Figure 5 – Transistor network for the logic function

f=!(a*b*!e*f+a*b*h+a*c*e*g+a*!b*c*e+b*c*d*!e*f+b

*c*d*h+d*e*g+!b*d*e): (a) generated by BDD [4], (b)

obtained using the proposed method.

It is important to notice that the solution proposed

here does not generate transistor networks from an

equation description, as it is done in state-of-the-art

transistor networks generation methods. Instead, it uses a

previously generated Spice netlist as input, and tries to

achieve a smaller transistor count. For complementary

series/parallel transistor networks the algorithm does not

present any improvement, since the dual generation

returns exactly the same networks.

5. CONCLUSIONS

A dual transistor network generation algorithm was

presented. The algorithm is a graph-based solution that is

able to generate dual networks for bridge-based

arrangements. The results show the potential use of the

algorithm, demonstrating that it could be used as a later

optimization step to achieve efficient transistor networks.

The elements count is minimized by exploring this

approach, leading to logic cell implementation with small

area overhead.

6. REFERENCES

[1] Weste, N.H.E. CMOS VLSI Design: A circuits and

Systems Perspective. Third Edition, Pearson

Education Inc, 2005.

[2] Poli, R.E.B.; Schneider, F.R.; Ribas R.P.; REIS, A.I.

Unified Theory to Build Cell-Level Transistor

Networks from BDDs. Symposium on Integrated

Circuits and Systems Design 2003 (SBCCI’03), pp.

199 – 204.

[3] Schneider, F.R.; Ribas, R.P.; Sapatnekar, S.S.; REIS,

A.I. Exact Lower Bound for the Number of Switches

in Series to Implement a Combinational Logic Cell.

International Conference on Computer Design 2005

(ICCD’05), pp. 357 – 362.

[4] da Rosa Jr. L.S.; Marques, F.S.; Schneider, F.; Ribas,

R.P.; Reis, A.I. A Comparative Study of CMOS Gates

with Minimum Transistor Stacks. Symposium on

Integrated Circuits and Systems Design 2007

(SBCCI’07), pp. 93 – 98.

[5] Zhu, J.; Abd-El-Barr, M. On the Optimization of

MOS Circuits. IEEE Transactions on Circuits and

Systems, vol.40, n.6, pp. 412 – 422, June 1993.

[6] Kagaris, D.; Haniotakis, T. A Methodology for

Transistor-Efficient Supergate Design. IEEE

Transactions on VLSI Systems, vol.15, n.4, pp. 488 –

492, April 2007.

[7] Harary, F. Graph Theory. Perseus Books Group,

1994.

[8] Hartsfield, N. Pearls in Graph Theory: A

Comprehensive Introduction. Second Edition,

Academic Press, 1994.

