
AN EXTENSION OF PETSc FOR RECONFIGURABLE COMPUTER SYSTEMS:

BLAS ON RASC

João Cleber Libório, Manoel Eusébio de Lima

Center of Informatics of Federal University of Pernambuco – UFPE – Brazil.

ABSTRACT

This work discusses the methodology to develop a

library BLAS based, compatible with the PETSc library

and working with the new reconfigurable logic platforms.

High performance platforms have been used in many

applications that requires massive data processing like

genomics, proteomics, geophysics, mathematics, finance

and so on. The text emphasizes is the BLAS and PETSc

libraries and how they can be used in a software/hardware

codesign to develop a reconfigurable library, using the

SGI RASC System.

1. INTRODUCTION

Because the increase of scientific computational

applications’ complexity, the search for high performance

processing of massive amounts of data has become a part

of modern computer engineering. In latest years, the

increase in functional density and performance of digital

circuits has allowed the development of new techniques,

capable of creating electronic products with greater

speed, small size and low power consumption.

Researches in areas like DNA structure, genomics,

proteomics, simulations in geological and geophysical

problems and calculations with huge matrixes in linear

algebraic systems are examples with demand for this

increase in computational speed.

The use of ASIC (Application Specific Integrated

Circuit) technology in processing is discouraged due to

the low level project difficulties and inflexibility, despite

to the best performance and lowest energy consumption.

The general propose processors are the most flexible

platform and the easiest for an application to been

developed, but their high clocking rates increase the

power consumption. Also, their non-specific architecture

allied with their computational paradigm decreases the

performance of massive data processing. Between the

two previous approaches, we have the FPGAs (Field

Programmable Gate Arrays). These devices provide a

flexible architecture with low frequency, large data

bandwidth and tools that allow their high level

configuration.

2. SCIENTIFIC COMPUTATION

Some classes of scientific computation involves large

dedicated libraries in several languages like C, C++,

FORTRAN, etc. In general, all these libraries are

implemented in software, in big machines with a big

capacity of processing. The capacity and use of these

machines however, based on general proposed CPUs or

ASICs, start to be a problem due their limit in power,

Figure 1 - The PETSc Structure.

speed, flexibility and cost. Thus, this work discusses a

hybrid architecture based on logic devices and general

propose CPUs. In this particular case, the logics devices,

the FPGAs, are used to accelerate the PETSc [1]

functions in hardware, like an arithmetic co-processor.

2.1. The PETSc.

The PETSc emphasis is the algorithmic and discrete

mathematics interface, where the programmer

manipulates mathematical and algorithmic objects [2].

However, these modules were organized to provide many

abstraction levels: the user can manipulates objects

associated with the application through an application-

specific interface, by using PDE Solvers or Linear

Solvers, or he can use the low-level computation kernels,

like BLAS-type operation or FFTs [Fig. 1].

The basic objects structures (vectors, matrices and

index sets) can be distributed, and then will be resolved

by the computation and communication kernels. These

low level kernels are the BLAS, LAPACK and MPI sub-

libraries.

All the PETSc communication follow the MPI

(Message Passing Interface) standard. In MPI the

parallelism is explicit, that is, the programmer is

responsible for jobs and data distribution. Thus, the

problem is divided in small parts, and then distributed for

the others nodes do the processing.

The BLAS routines provide standard building blocks

for performing basic vector and matrix operations. It is

subdivided in three levels: first level performs scalar,

vector and vector-vector operations; the second performs

matrix-vector operations; and the third level performs

matrix-matrix operations.

Figure 2 - RC100 blade achitecture.

Due to the efficiency, portability, and wide

availability, the BLAS blocks is commonly used in the

development of high quality linear algebra software [3].

The LAPACK (Linear Algebra Package) is one example.

The BLAS/LAPACK don’t follow the PETSc library, they

are into an external package, that the user have to

download in the PETSc installation [4] in accordance

with the code language – f2cblaslapack to C/C++ codes

[5]. It is a BLAS in FORTRAN conversion to C, by

freeware software called F2C, which are the level 1 BLAS

and complete LAPACK.

2.3. RASC System

The SGI
®
 RASC™ is a supercomputer with massive

data processing proposes. The system consists of two

distinct architectures: one is the Altix 350 and the other is

the RC100 blade [Fig. 2].

The Altix 350 is an Intel based system, with two

Itanium 2 processors, up to 12 GB DIMM RAM, four

slots PCI/PCI-X and supports DVD-ROM, SCSI,

Ethernet and USB. The system allows adding more

processors and memory modules by expansion modules,

up to 32 processors and 192GB memory [6].

The RC100 blade has two Xilinx
®

 Virtex

4 LX200

FPGAs, 80MB QDR SRAM and is connected to Altix

through the NUMAlink 4 technology, allowing the

FPGAs extremely high bandwidth (up to 3.2GB/s per

FPGA). Figure 4 shows RC-100 architecture [6].

All the necessary resources to develop to this platform

are provided for the hardware/software codesign through

the RASC Abstraction Layer (RASCAL) and RASC Core

Services. The RASCAL is a set of API that abstracts the

hardware to provide deep and wide scaling or direct and

specific control over each hardware element in the system

[6]. The Core Services is user independent and is pre-

synthesized, made up of all the functional blocks

excluding the algorithm block (SSP port, global clock

generation and control, independent read and write ports

to each of the three logical or five physical random

access memories, DMA engines, control and status

registers and hardware debugging registers) [6].

2.4. The Software/Hardware Codesign

Software/Hardware codesign can be defined as the

simultaneous design of both hardware and software,

involving cooperative specification, development,

verification and management. The codesign techniques

Figure 3 - Migration process.

includes: a Co-specification, where the function will be

decomposed to create a conceptual model of the system

and software and hardware functionalities are considered;

a Co-development, where the hardware and software

interfaces are developed; and Co-verification, where the

SW/HW partitioning will be optimized and refined

according to the requirements [7].

3. BLAS ON RASC: METHODOLOGY

Through MPI is possible to decompose the

computation in three models [8]: the Multiple Program

Single Data (MPSD), the Multiple Program Multiple Data

(MPMD) and the Single Program Multiple Data (SPMD),

that is the aim of this work.

In SPMD parallelism model, it was noted that BLAS

kernel is not distributed, and will be integrally computed

in one node. Thus, the strategy of acceleration is

converting the BLAS in a hardware algorithm and defines

software/hardware wrappers according with the chosen

platform.

3.1. The Migration Process

The migration process is to identify the massive

processing blocks in BLAS routines – generally inner

loops – and convert this code blocks in dynamic call for

new functions executed in FPGA [Fig. 3]. This design

flow provides transparency to user’s applications,

keeping the main characteristics of BLAS library, with

same signature of functions prototype. The use of FPGA

implementations results in a more efficient execution

with small computation time. There are, in literature,

common performance increases about 20 to 50 times,

with migration of sequential massive operations for

hardware parallel execution [10].

The RASC System was chosen due to your hardware

and software wrappers, and all peripheral subsystem, was

developed through the Core Services and RASCAL API.

It’s only necessary to develop the hardware algorithm and

the RASCAL API calls. It’s only necessary to develop

the hardware algorithm and the dynamic calls to the

RASCAL API.

In this way, the new library with the Reconfigurable

BLAS (RC BLAS) will be fully compatible with legacy

Figure 4 - Dynamic call hypothetic example.

code and will work in RASC. And the sentence

containing only the dynamic call resolution, will be

resolved in RC100 blade by RASCAL API.

3.2. The Dynamic Call and Algorithm Architecture

The main flow of execution, consists of queue a list of

commands to scaling kernel (allocate resources, configure

the resources, open the hardware algorithm, send data and

parameters, starts the processing, receive the results) and

wait the done signal [Fig. 6]. Then, the resources are

unallocated and the results are delivered to main function.

A possible and simple architecture for hardware

algorithm is one memory control, two data buffers and

the algorithm hardware description (HDL) [Fig 7]. The

memory control have be capable of request data to Core

Services, receive it and feed the Input Buffer, withdraw

the results from Output Buffer and starts (or not) the

algorithm, according to his implementation. The Buffers

can be from a register to a more complex structure, like

FIFOs or caches, according to the algorithm’s

implementation.

5. CONCLUSIONS AND FUTURE WORKS

This work presents strategies, in scope of HPCIn

project, for extension of the PETSc library applications

for reconfigurable computer systems, used as high

performance scientific problems solver. The HPCIn

Project is a collaborative research, in development in the

Center of Informatics. This research allows the

implementation of data massive computation in high

performance applications and integrates the

PETROBRAS, in partnership with the FINEP.

The SPMD parallelism allows migrate only the BLAS

kernel to hardware processing. The proposed

methodology (identify and convert data massive

processing inner loops into dynamic call) provides

transparency and portability to user’s applications, and

the performance can be increased about 20 to 50 times.

The RASC platform uses FPGA technology to develop

a full-featured reconfigurable computer, connecting

FPGAs into the NUMAlink fabric making them a peer to

Figure 5 - Algorithm Block architecture.

the microprocessor and providing both high bandwidth

and low latency. The Core Services is the key component

of RASC which facilitates execution of the user algorithm

in the algorithm block. It helps in synchronizing the I/O,

memory, and Algorithm Block operations.

The migration of a new dynamic call for RASC

system consists to develop a software control with a well

defined flow and a hardware block that will execute the

algorithm.

In the near future we intend: apply the methods for

the ddot and dswap BLAS functions (vector-vector dot

product and vector-vector swap operation) for the first

use case; measure increases performance; develop the

design flow and hardware implementation for the

f2cblaslapack.

6. ACKNOWLEDGEMENTS

We would like to thank the National Council of

Technological and Scientific Development (CNPQ) and

Funding for Studies and Projects (FINEP) for funding, to

the Petrobrás Ressearch Center (CENPES) and to the

Cooperative Research Net in Computational Modeling

(RPCMod) coordination, and to Center of Informatics

(CIn - UFPE) for the physical structures (laboratories and

PCs).

7. REFERENCES

[1] PETSc Release Version 2.3.3. Hosted in

<ftp://ftp.mcs.anl.gov/pub/petsc/release-snapshots/

petsc-2.3.3-p3.tar.gz>. Access in 07/25/2007

[2] Introduction to PETSc: Presentation Objectives.

Hosted in <https://lineal.developer.nicta.com.au/

support/workshops/slidesNIPS05/barry_NIPS2005.pdf>.

Access in 07/25/2007.

[3] BLAS. Hosted in <http://www.netlib.org/blas/>.

Access in 07/26/2007.

[4] PETSc Installation. Hosted in <http://www-

unix.mcs.anl.gov/petsc/petsc-as/documentation/

installation.html>. Access in 07/25/2007.

[5] External package f2cblaslapack. Hosted in

<ftp://ftp.mcs.anl.gov/pub/petsc/fblaslapack.tar.gz>.

Access in 07/25/2007.

[6] RASC User’s Guide. SGI, 2007.

[7] J. Takalo, J. Kääriäinen, P. Parviainen, and T. Ihme.

Challenges of software-hardware co-design. Access in

08/27/2008. Hosted in <www.vtt.fi/inf/pdf/working

papers/2008/W91.pdf>.

[8] William GROPP, Ewing Lusk, and Anthony Skjellum.

Using MPI: Portable Parallel Programming with the

Message Passing Interface. MIT Press, 1994.

[9] L. Zhuo and V. K. Prasanna. High Performance

Linear Algebra Operations on Reconfigurable Systems.

Hosted in < ieeexplore.ieee.org/iel5/10435/33129/

01559954.pdf?arnumber=1559954 >. Access in

07/09/2007.

[10] FPGA Acceleration in HPC: A Case Study in

Financial Analytics. Hosted in

<http://www.xtremedatainc.com/pdf/FPGA_Acceleration

_in_HPC.pdf>. Access in 07/26/2007.

