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ABSTRACT

This  paper  presents  an  ongoing  work  which 
comprises  the  insertion  of  a  Partitioning  step  in  the 
PARROT  Flow  for  Physical  Synthesis.  A  partitioning 
step was inserted to enclose a simulated annealing based-
placement step of the flow. Runtime and wire length data 
were collected to compare the results within and without 
the partitioning step on a group of circuits. Also, using 
these  same  circuits,  we  have  collected  area  and  wire 
length to analyze the cost of the partitioning step versus 
the benefits in runtime and routability. Besides that, the 
different  ways to  create  the  partitions  and  manage the 
connections between them will be discussed.

1. INTRODUCTION

The reason we started to implement this partitioning 
tool was because of the existence of a complete circuit 
design flow, including placement, layout generation and 
routing, developed at our university. This flow is called 
PARROT Flow  [1] [2]. However, currently this flow is 
extremely  time  demanding  because  of  the  simulated 
annealing (S.A.)  approach in the placement tool, called 
MangoParrot  [3].  Because  of  its  characteristics,  the 
placement tool requires some tuning in order to perform 
correctly.  The  most  important  parameter  to  set  is  the 
num_reps_per_cell,  which  controls  the  number  of 
iterations  in the inner  loop of  the S.A.  technique.  In  a 
previous  study  it  was  determined  that  this  parameter 
should be set as the number of cells to the second power, 
so  the  circuit  could  have  an  acceptable  wire 
length/runtime trade off.

When  the  number  of  cells  in  the  circuits  starts  to 
increase,  the demanding  time to  place  them by  a  S.A. 
approach becomes way too large. Although an analytical 
placement  tool  may  be  used  to  reduce  the  runtime, 
simulated  annealing  based  techniques  are  probably  the 
best ones when it comes to wire length reduction[4]. This 
is why a partitioning tool was implemented: by splitting 
the circuit into multiple parts, it is possible to keep the 
number of iterations under control so that the placement 
tool  runtime  is  considerably  decreased,  therefore, 
diminishing the placement runtime problem. 

Some problems arise when we must decide how to 
split the circuit and, after placing each partition, we must 
bind  then  together  again  in  a  certain  way  that  the 
connectivity of the circuit is optimized. These problems 
will be presented in the next sections when the virtual pin 
representation will be introduced.

Section two presents the current state of this work. In 
section  three  some  preliminary  results  are  shown  and 

discussed. And finally, the conclusions and future work 
are hold in section four.

2. CURRENT STATE OF IMPLEMENTATION

When measuring the run time improvement achieved 
through  partitioning  it  really  does  not  matter  how  the 
partitioning  is  done,  only  the  number  of  cells  in  the 
partition being placed matter. However,  that is not true 
for  placement  (measured  in  wire  length)  and  routing 
(measured in unrouted nets) since it is possible to mess 
with all the connectivity of the circuit by making wrong 
decisions on which cell  belong to which partition.  The 
main  idea  is  that  a  group  of  cells  that  are  strongly 
connected should be put in the same partition, in a certain 
way  that  the  connections  between  partitions  are 
minimized and the partitioned circuit characteristics are 
kept close to the ones in the original circuit. 

In graph theory, a cut is a partition of the vertices of a 
graph into two sets. The size of a cut is the total number 
of edges connecting two partitions, and a cut is minimal 
if the size of  the cut  is  not larger  than the size of any 
other cut. The idea of finding a minimal cut in a graph 
comprises with our idea of strongly connected cells.

 Once the problem is identified we can make use of a 
third  party  tool  to  create  the  partitions.  Finding  the 
minimal  cut  in  a  graph  is  the  approach  of  several 
partitioning  tools  available.  The  chosen  tool  is  called 
hmetis  [5] and  it  uses  algorithms  based  on  multilevel 
hypergraph  partitioning  schemes  [6].  In  order  to 
minimize  the  placement  run  time,  the  partitioning  run 
time must also be minimized, so the partitioner must split 
large graphs very fast. In the circuits that we performed 
experiments and collected data, this time is, at most, only 
0,00002%  of  the  total  placement  time  without 
partitioning. 

The  hmetis  tool  must  be  supplied  with  a  file 
containing a weighted graph description that  represents 
the input circuit for the hmetis partitioner. The developed 
tool,  called  weezer,  is responsible for creating this file 
and  the  partitioning/placement  management.  For  later 
comparison  with  other  tools  and  simplicity  at  the 
moment, it  is desired that each partition have the same 
circuit  area  or  at  least  close  to  that.  To  reach  this 
requirement  we  also  provide  hmetis  with  a  parameter 
defining  the  maximum  acceptable  difference  between 
partitions  areas.  This  parameter,  called  the  unbalance 
factor, is currently set as 1%, the lowest possible value. 
Since weezer itself can not estimate each cell area, it uses 
the results from another external tool called CellSE [7] to 
estimate the areas and later put these values in the hmetis 
graph description file as weights. 



Fig. 1 – Congestion analysis

Using a last  parameter  which specifies  the desired 
number of partitions we are ready to start the partitioning 
and weezer  immediately makes a  system call  and runs 
hmetis. After the partitioning is done hmetis writes a file 
where  each  cell  from  the  original  circuit  is  given  a 
partition number in which it belongs. Weezer reads that 
file and creates a new circuit description file (CDF) for 
each  partition,  corresponding  to  different  placement 
inputs.  These new files contain cells,  nets,  regular  pins 
and virtual pins.

The  nets  that  connect  two  or  more  cells  from the 
same partition are written to the corresponding partition 
CDF. The regular pins that are used by at least one cell 
from the partition are also written. The virtual pins are 
created when a net that connects two or more cells from 
different  partitions  is  found.  The  virtual  pin 
representation  is  used  to  maintain  the  partitions 
connectivity.

It is important  to notice that the number of  virtual 
pins is equal to the minimal cut (or double if you count it 
once in each partition) only if we split the circuit in two 
partitions.  When  we  split  a  circuit  in  more  than  two 
partitions  the  sum  of  the  virtual  pins  is  equal  to  the 
hyperedge  cut(sum  of  minimal  cuts  from  all  internal 
bisections that hmetis made).

Also on virtual pins: they must be placed properly. 
To  do  this  we  applied  a  very  simple  rule  in  which  a 
virtual  pin position  will  be  the  closest  possible  to  any 
other partition that contains the same net. This is clearly 
not optimal, but still considerably reasonable and fast to 
implement and run. It is reasonable because once close to 
one of the other possible partitions, in the worst case it 
will be just  shifted inside the bounding box formed by 
this chosen partition and the possible other ones. 

Before we do the placements we must estimate the 
circuit area and since all placements are row based, this 
means we must estimate how many rows each partition 
will occupy. The number of rows is the way we control 
the circuit aspect ratio. Currently we are aiming to keep 
the circuits with the width the same as the height, in a 
squared shape. If necessary or desired this shape can be 
easily changed. This feature will also be useful if a future 
floorplanning  strategy  provides  a  desired  area  for  the 
weezer tool. To estimate the number of rows we roughly 
add up the areas from all the cells and divide it by the 
strip height, which will give us an average slightly bigger 
width, in comparison with the height.

At  this  stage  weezer  is  ready  to  perform  the 
placement  of  all  individual  partitions.  This  is  done  by 
calling the MangoParrot placer for each one.

Since MangoParrot is a wire length driven placer all 
the circuits placed with it looks like the left side of fig. 1, 

Fig. 2 – Area analysis.

Fig. 3 – Unrouted nets analysis.

where  the  center  is  heavy  populated.  When  weezer  is 
used  the  circuit  will  look  like  the  right  side  of  fig.  1, 
where  the  congestion  is  more  spread  among  the  hole 
circuit  area.  The image shows that  the rounded  shapes 
may create some areas without cells, which could mess 
up  the  entire  placement/partitioning  process  since  our 
flow deals with relative positioning. So, when weezer is 
binding  the partitions it  detects  these blank spaces and 
inserts  floating  inverters  to  maintain  the  circuit  shape. 
These  floating inverters  act  as filler  cells  and  help the 
circuit  to  be  more  routable.  This  result  and  others  are 
shown in the next section.

3. PRELIMINARY RESULTS

In  order  to  observe  the  impact  of  the  partitioning 
step  in  the  placement  runtime reduction  we performed 
several  placements  using  a  variety  of  circuits,  mostly 
obtained  from  ISCAS98  benchmarks.  The  results  are 
shown in fig. 4. The weezer results were obtained using a 
2x2 partitioning grid. In the  X axis we have the number 
of cells. In the Y axis we have the time to place.



Fig. 4 – Mango versus weezer.

      The values in X axis are not in any kind of scale 
since that number is obtained from real existing circuits. 
Because  of  that  the  behavior  of  the  regular  placement 
curve  is  a  bit  twisted  but  it  is  close to  quadratic.  The 
same way is the weezer placement curve,  in which the 
actual behavior is close to linear. If we aim to change the 
curve  behavior  into  really  linear  we  can  define  a 
maximum number of cells allowed per partition.  Let us 
say that the chosen number is 200 cells and it takes 250 
seconds to place this number of cells.  So, all placements 
maximum  runtime  can  be  calculated  by  ((N div 
200)+1)*250  seconds,  where  N is  the  total  number  of 
cells for a particular circuit.

 One important result that is not shown in fig. 4 is the 
whole partitioning management runtime, that is the sum 
of  CellSE,  hmetis  and  weezer  itself  runtimes.  For  the 
circuits  placed in fig.  4 this time ranges from 0,99s to 
1,92s,  representing less than 0,001% of the sum of the 
placement  time  for  all  four  partitions.  These 
measurements and all the placements were made using an 
single core ATHLON XP 2000+.

Since a partitioning step is inserted in the flow we 
must  understand  how  that  will  affect  the  final  circuit 
layout  and  characteristics.  In  order  to  do  that  several 
circuits were submitted to the weezer tool. Some of the 
results obtained are showed in fig. 3 and fig. 4.

In  fig.  3  we  have  the  total  circuit  area  for  three 
different  circuits. As expected the partitioning caused a 
little area overhead. On the other hand, fig. 4 shows that 
the  number  of  unrouted  nets  is  smaller.  Altough  the 
number of unrouted nets is still unacceptable, it is clear 
that the congestion distribution leads to an easier routing.

4. CONCLUSIONS AND FUTURE WORK

The  main  conclusion  at  the  moment  is  that 
partitioning allows simulated annealing based placements 

to  run  in  reasonable  time.  Since  simulated  annealing 
strategies  may  achieve  a  wire  length  very  close  to 
optimal, we must now find out if partitioning does not 
affect that condition. This may be achieved by comparing 
the results against an analytical based placer.  However, 
even  a  wire  length  increase,  due  to  congestion 
distribution,  can  improve  the  flow  convergence  by 
improving routability. Also, without the partitioning the 
current  flow  was  not  able  to  benefit  from  the  use  of 
parallelization. Now several partitions placements can be 
done  in  parallel  since  each  partition  placement  is 
independent from each other. 

It is interesting to observe that the placement itself 
does not require the creation of virtual pins but its final 
result  may be  improved  if  they are  properly  placed  in 
each  block  boundary,  especially  for  wire  length 
reduction.   In  another  words,  using  virtual  pins  is  an 
affordable  way  to  decrease  the  additional  wire  length 
without  adding  more  complexity  to  the  simulated 
annealing approach. 

As mentioned  before  the  virtual  pin  positioning  is 
not optimal: that algorithm can be refined to match the 
optimal direction  of  the virtual  pins,  even in  the cases 
when  nets  have  terminals  in  more  than  two partitions. 
Also, the floating inverters could become real filler cells 
and  a  more  detailed  aspect  ratio/floorplanning  strategy 
could be developed.

These ideas are either under development or testing, 
so the results at the moment are not fully conclusive. This 
paper is mostly based on ongoing research although we 
strongly believe that all ideas deserve a closer look since 
all of then look very promising.
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