RAMAGT — A Tool for Automatic Generation of
Radix-2" Array Multipliers

Jaccottet, Diego P.; Pieper, Leandro Z.; CostaaEttuA.; Almeida, Sérgio J.

Universidade Catdlica de Pelotas
diego_porto_j@yahoo.com , leandrozaf@pop.com.lmpgta,smelo}@ucpel.tche.br

Abstract— This paper presents a new Automatic Generation
Tool (RAMAGT) that generates Radix-2" Array Multipliers. With
the increase of digital systems complexity, textual descriptions of
the circuits became very hard to be made by hand. This problem
can be solved by using tools that can automatically generate textual
description of digital circuit. As multiplication is a common
operation in many digital circuits such as Digital Signal Processors
for example, it has motivated us to create a tool that generates
multiplier circuit descriptions for VHDL (VHSIC Hardware
Description Language) and BLIF (Berkeley Logic Interchange
Format) formats automatically. This tool generates n bit wide
multiplier circuits operating on group of m bits of the Radix-2"
Array Architecture. To validate the multipliers generated by the
RAMAGT tool we have used SIS (A System for Sequential Circuit
Synthesis) and SLS (Switch Level Simulator) environments.

l. INTRODUCTION

Multiplier modules are common to many DSP applaai
and general purpose processors. The state oftthaspointed
to multipliers that can operate on 64-bit wide, ethis very
hard to describe by hand due to the complexityhf type of
circuit. As circuit designers do not have any titoespend
making the circuit textual description by hand, mhaidue to
the time-to-market aspect, thus it is very impdrtandevelop
tools that can automatically generate state ofattheof digital
circuits. In this work we propose a RAMAGT tool thzan
generate descriptions of radiX-2array multiplier circuits
automatically.

While the BLIF description enables the design oé th
multipliers at the gate level, the VHDL descriptienables the
multipliers to be synthesized onto FPGAs. With fleibility
proposed by the RAMAGT tool, the designer can chobe
most adequate design environment depending on ¢tiécmto
be considered (area, performance or power). Besategher
important issue is that commercial tools such asntbte
Graphics [3] accept BLIF and VHDL as input descops in
its flow [4].

II. RELATED WORKS

A lot of work has focused in the development ofoaustic
generators of multiplier circuits. In [5] it is grosed a M-bit by
N-bit Booth encoded parallel multiplier generator[6] a new
low-power constant multiplier with a generator wenit in C++
is used to generate technology-independent VHDle aifdhe
constant multiplier for different input specificatis. In [7] an
automatic hardware generator is developed for caoimpu
multiplier-based arithmetic functions where verilogdes are
generated. In [8] a regularized multiplier generdggroposed
creating VHDL descriptions for signed and regulartiplier.
One of the most significant publications is presdnin [9],
where a module generator called Mullet is presetaquoduce
a near-optimal parallel multipliers, creating npligrs
architectures that broken down into a partial pobdyenerator
(PPG) and a partial product summer (PPS). Thedaolalso
be used to explore tradeoffs between architectukitsough
the great amount of tools to generate automaticriggi®ns of

The multipliers generated by the RAMAGT tool were multipliers present in literature, none of them halsen into

proposed by [1] and consists of pure array muéiglithat can
operate on 2’'s complement and use a raflixeBcoding to
reduce the partial product lines. The RAMAGT toanc
generate BLIF (Berkeley Logic Interchange Forma&) 4nd
VHDL descriptions ofn-bit wide multipliers automatically.
Besides, binary and hybrid encoding can be usegtaup ofm
bits. The hybrid encoding can reduce the glitchaagivity
along the array multiplier and this encoding cansbtin the
RAMAGT tool when low power multipliers design argkén
into account. Another important aspect of the tmlthe
possibility of enabling different group af-bit operation in the
array multipliers easily. This aspect enables thayamultiplier
to reduce significantly the number of partial prodlines. In
this work, we have limited the generation of muikirs to

account the flexibility of generating another tetdescription
rather than VHDL or Verilog. Besides, neither oferth
considers another operand encoding rather thamybilmour
tool, radix 2" hybrid array multipliers are generated
automatically as a way of reducing the switchintivity along
the array, and thus enabling low power design.

Ill. OVERVIEW OF THE RADIX-2" ARRAY MULIPLIER

In this section we summarize the methodology of¢t the
generation of regular structures for arithmeticrap®s using
signed radix-2 representation.

For the operation of a radiXx*2nultiplication, the operands
are split into groups ah bits. Each of these groups can be seen

group of m=6 and thus, the multipliers can operate on thess representing a digit in a radi%-2Hence, the radix™2

maximum of radix-64.

multiplier architecture follows
operation of numbers
complement.

the basic multigiton
represented in radix-in 2's

This operation is illustrated in Figure 1, for adiral6
multiplication example. For the-m least significant bits of the
operands unsigned multiplication can be used. Tasigb
product modules at the left and bottom of the anagd to be
different to handle the sign of the operands.

For this architecture, three types of modules areded.
Type | are the unsigned modules. Type || modulexieathe
m-bit partial product of an unsigned value with as 2’
complement value. Finally, Type Ill modules thakergie on
two signed values. Only one Type Il module is lieegh for

any type of multiplier, Wherea%—z Type Il modules and

2
(%_1) Type | modules are needed.

1) I§

Rt s ATt

Sx 11112: Sign Extension B 1111 o9
T 1110000 1@ M 11111111 (1) 1110000 1— Typel!
Type li(m=4) B 11111111 ¢D -11110001 —> Typell
A 11110 1111)111111110001 «—— 111111110001 ¢
i~ 1114 +000000000001 I
717000 1e 0000000000000007T ™ A e

Type lli(m=4) u “

B 11 T11111110001 —» e
%ﬂ +00000001 —> Typelll

™

000000000001 ™

Figure. 1 - Example of a 2's complement 8-bit wialdix-16 multiplication

IV. RADIX-2™ ARRAY MULTIPLIER GENERATION

The RAMAGT tool can generate textual descriptiom® t
bit wide multiplier circuits. The wide of the opeds is
selected by the user as will be after presente8eiction VI.
Another variable, nameah, is also available for the user and it
represents the number of group of bits that is iplidd at a

time. The range ah values that we are presenting in this work

can varies fromm=2 (radix-4) untilm=6 (radix-64). Although
we have presented results umik6, the tool can naturally
generate higher radices multipliers. In the amawitiplier
architecture, the operands are split into groupndgits. Thus,
the number of operandg)(depends on the values mfandm
and its calculation is given according to the Eiquml.

@

As should be observed, each operand represents
operation ofm x n. Thus, if the value of is an integer number,
the structure of the array multiplier will be consed byx
operands. As should be also observed, the Equataan also
be used in order to calculate the number of desficat
multiplication blocks into each operand. As an eplmnif a
16-bit multiplier is generated to operates on raBx(m=4),
thus the number of operands is equal to 4. Thusgdneral
architecture will be composed by 16n=4 dedicated
multiplication blocks.

n_temp = mx(int(x) +1) (2)

This strategy is needed to calculate the size @ th
asymmetrical block ff). This is made according to the
Equation (3).

®)

The number ofm x fb blocks is defined asfc and

calculated according to Equation (4). The term xntis
multiplied by 2 in (4), because the two operandd e
multiplied by thefb terms.

fc=2xint(x)

fb= m—(n_temp— n)

(4)

As an example, if we need to generate=46 andm=3
multiplier architecture the values of temp= 18 andfb=1,
according to the Equation (2) and (3). So, the mjgtszn of the
multiplier will need ten 3x1f¢) and one 1x1f x fb) blocks in
this architecture. As should be observed, indepgndé the
size of the operands, we will ever need only fine fb block,
because this represents the multiplication of thet Imost
significant bits. Those blocks are previously desd and they
are available in the library of the RAMAGT tool. Figure 2 it
is shown an example of the structure of an arraljiplier with
m=3 andn=4 bit wide.

AT Al A0 B3

A2 A1 AD B2 BLED

PPLP0

Figure. 2 - An array multiplier for 4-bit wide ama:=3
an

As can be observed in Figure 2 the structure ofrmay
multiplier for 4-bit wide andm=3 need one block 3x3
(calculated by int{)), two blocks (calculated big) 3x1 (n x
fb) and one block 1x1ft§ x fb).

V. METHODOLOGY

In this section we will briefly show how the RAMAG®ol
was developed. The tool was implemented by using tw

When the value of in Equation (1) does not represents anprogramming languages. One of them is C++ that réee

integer number, the RAMAGT tool calculates a terappr
value forn namedn_temp that is presented showed in Equation
(2). This temporary value is needed to calculagerthmber of
asymmetrical of dedicated multiplication blocks should be
observed in Equation (2), the teimt represents the integer
part ofx calculated by Equation 1.

executable files in a faster way. The other is @@L (C
Scripting Language) [11] that is a powerful and yeas
programming language that follows the C syntax \@ogely
and it is used like an interpreter. A language tisss scripts
has the advantage that the code does not need doniygiled
[12], so that the projects can be easily generaiée C++
language is used to link the interface of the mtsje

requirements with the user. It allows that manyfedént
projects can be done at the same time.

In Figure 3 we show the methodology used to geaemat
multiplier description. The main program executdse t
secondary one with the language format as parart@itéF or
VHDL), allowing multiple secondary programs withffdrent
parameters and languages to be opened at the Bamerhe
secondary program lists the tree of projects fa thiven
language and it executes the selected project finentree with
the given parameters set. It will execute accordiogthe
configuration of the language (a configuration fibe the
language folder includes the way it will executs, @xtension
and the description for the language). It will alsend the
locations for the project to execute appropriatd@lye project
folders contain the files to be executed and artsadiles (the
main CSL executable and its companions may reqtgre
execute appropriately). It also contains the notethe project
and a file describing the parameters and initialesfor them.

Main Program
CH++
User’s Description
Selection

BLIF or VHDL
format

Secondary Program
CH++
User’s Multiplication
Type Selection

CSL Folders
Description libraries
for (n,m)
parameters

|

Project Folder

Figure 3. Methodology used to create the RAMAGTI too

VI. THERAMAGT TooL

In this section we present the steps in the RAMAGA to
generate multiplier descriptions of radiX-array architectures.
The main screen of the RAMAGT tool is presentefign4. In
this screen we can select the format of the midtiptircuit
description (BLIF or VHDL). It should be observétht a good
characteristic of this tool is that we can make ynarojects at
the same time.

RAMAGT - Radix-2m Array Multipliers Automatic Generation Tool g@@

Select one format

BLIF - Multipliers in BLIF format

YHOL - Multipliers inYHDL format

Neww project Quit

Figure 4. RAMAGT main screen

Once we have selected the textual description fofonahe
multipliers, another window is opened and then vileakle to
select the number of groups of bits) (and the length of the
operands, as it is shown in Figure 5. After thatjugt click on
“Generate” button, and it will be created a folidtethe current
path called “Projects” where will be contained fites with the
textual description of the multiplier. To validatéhe
descriptions created by the tool we introduce thb\Y, files in
Quartus Il from Altera or the BLIF format in SI&wronment.

RAMAGT - VHDL - Multipliers in YHDL format [2][B][X]

Type selection:

=1 Multiplier
=1 Binary
ml
mz
m3
mé
ma
mk
+- Hybrid

Farameters -> multiplier input lenght:
n |32

Generate Project folder | Motes

Cluit

Figure 5. Selection of the type of groupnobits

Examples of VHDL and BLIF descriptions from 4;bi
m=2 array multiplier generated by RAMAGT tool are
presented in Figures 6 and 7. For simplicity of Higures we
have not shown the operandl and operand2 thatiborauits
of the array architecture.

LIEBELREY ieee;
TSE ieee.std_logic_ll64.all:
ENTITY Multiplicador_Array_ Comiinal ComExtensao_binario_mZ_nd I3
PORT (a, b: IN 3TD_LOGIC_WECTOR(3 DOWNTO 0) :
3: 00T STD_LOGIC_WECTOR(? DOWHNTO 0
):
ENL Multiplicador_ Array Com3inal ConmExtensao_binario _m nd;
AFRCHITECTURE comportamento OF Multiplicador Array Comiinal ComEx
SIGNAL =so0el,zo0e0: STD_LOGIC_WECTOR(1 DOWNTO 0}
SIGNAL soleZ,solel,szolel: STD_LOGIC_VECTOR(1 DOUNTO O):
SIGNAL coutOe : STD_LOGIC_VECTOR(L DOWNTO 0Oj;
SIGNAL tempO: 3TD_LOGIC_VECTOR(1 DOWNTO 0):

BEGIN

estagiol: operandol PORT MAP (&l DOWNTO 0), bi(3 DOWNTO
LOWNTO 0} ;

estagiol: operandoZ PORT MAP (a(3 DOWNTO 2), b(3 DOWNTO
so0led §:

estagioz: halfadder 2ZBits PORT MAP (solel, solel, s(3 L0

estagiod: fulladder ZBits PORT MAP [=olel, solel, coutle

templ(0) <= solel(l):
tenpl(l] <= so0el(l):

estagiod: fulladder ZEits PORT MLFP

[solei, templ,
END comportamento;

coutle

Figure 6 - VHDL format example

.wodel multiplicador array c/zinal 4dBits_Zagrupamento

.inputs 43 A2 41 A0 B3 EZ E1 EO

.outputs 57 56 35 34 53 32 51 30

.subckt operandol &l=Aa1 A0=40 B3=B3 BZ=BEZ El=El BO=BE0 35=30E3
.subckt operandoZ A1=343 A0=42 B3=B3 B2Z=B2 Bl=BEl BO=BO 55=31ES
G0=51ED0
.subckt
.subckt
.subckt
.end

halfadder ZEits 41=30El A0=30E0 BE1l=31E1 BO=31E0 COUT=I
fulladder ZBits CIN=COUTOEOD Al=30E3 A0=S0EZ El=31E3 EI
fulladder nt++ ZBits CIN=COUTOEl Al=50E3 A40=350E3 El=31]

Figure 7 - BLIF format example

VII.

In this section will be presented results fierl6 and 32-bit
multiplier architectures on radix 4,8,16, 32 and @4the
radix-2" array multipliers that were generated by RAMAGT
tool. The
descriptions format. Area, delay and power consionpt
results are presented for the 16 and 32-bit migtipl
architectures. Area and delay were obtained byguSi$ tool
and power results were obtained with SLS tool, rafte
converting BLIF to SLS format. This is made by &2slls
converter. Area results are presented in termsuofber of
literals. Delay results were obtained using the sivatelay
propagation between the input and output signatswelP
results were obtained by using the average powee\af the
SLS tool [8], by using the general delay model. fhar power
simulation we have applied a random pattern sigmih
10000 input vectors.

PERFORMANCE RESULTS

Table 2. Performance results for 16-bit radixaray multipliers

results are presented by considering BLIF

operate with higher performance and power reduction
terms of power reduction we have observed thatdHdaction
of glitching activity is the main aspect of poweduction in
the 16 and 32-bit radix-16 array multipliers.

VIIL.

We have presented a new RAMAGT tool for the aut@znat
generation of radix-2 array multiplier. The tool generates
automatically BLIF or VHDL descriptions of bit andm group
of bits of array multipliers. The circuit descrigmis enable that
the multipliers can be synthesized to FPGAs (VHDL
description) or at gate level by using SIS envirenm(BLIF
description). We presented area, delay and povseittsefrom
16 and 32-bit array multipliers operating on diffet radices.
These multipliers were generated by RAMAGT in BLIF
description format and the results showed that rddix-16
multipliers presented the higher performance anel lgss
power consumption. As future work we intend to pres
results of the multipliers with Hybrid encoding. Véllso intend
to introduce in the RAMAGT new architectures of tipliers

CONCLUSIONS AND FUTURE WORK

Parameters | m=2 | m=3 | m=4 | nES | MG that use the low power techniques proposed by [13].
Area (Literals)| 4602 8382 14983 334%2 61758
Delay (ns) 227,80 218,50 206,20 234,50 322,70
REFERENCES
Power (W) 0,2414 10,2315 10,2292 0,3748 0,5144)
[1] COSTA, E.; MONTEIRO, J.; BAMPI, S. “A New Architaate for
) o Signed Radix 2 Pure Array Multipliers” . InIEEE International
Table 3. Performance results for 32-bit radbapray multipliers Conference on Computer Design, pages 112-117, 2002.
Parameters| m=2 | m=3 | m=4 | m=5 | m=6 [2] BERKELEY, U. BLIF — “Berkeley Logic Interchange Foat'.
Area 18586 | 31849 6193% 131061 325885 University of California. At http://fembedded.edeskeley.edu/ . 2007.
(Literals) [3] GRAPHICS, M. “QuickPath Users and Ref. Manual¥entor
Delay (ns) | 478,20 448,50 431,40 45800 536,10 Graphics Athttp:/iwww.mentor.com . 2008.
] A70[4] OLIVEIRA, L. L.; “Prototipacdo e Andlise de Circag Multiplicadores
Power (W) 2,5231 1,6600 1,4635 18387 29470 Array de Baixo Consumo”. Dissertagdo de Mestrad®GEE. UFSM,
RS. 2005.
As can be observed in Table 2 and Table 3, thentit3@- |57 FaDAVI-ARDEKANI, J. “MxN Booth encoded multiplier enerator

bit multipliers present higher area values accagdio the
growth of the radix operation. This occurs becaasethe
higher radix operation of the multipliers, highes the
complexity presented by the dedicated multiplicatiocks.
While the radix 4 dedicated multiplication block
implemented by using only 8 logic gates, for thdix&%4
more than 5.000 logic gates are needed to implertient
dedicated multiplication block. This justifies thkrge
difference of area presented by the 16 and 32-bitipfiers
according to then value used.

In terms of delay it should be observed that thétiptiers
on radix-16 are that present the best result amtirey
architectures. In fact, from radix-4 to radix-1@ ttritical path
decrease because there is a reduction of partaupt lines

is

and the dedicated modules are more simple to bl

implemented. Although the radix-32 and radix-64
multiplication blocks enable the reduction of parfproduct
lines of the multipliers, these blocks are more ptax to be
implemented and thus, the higher complexity of ¢h@edules
do not enable reduction in the critical path andssguently in
the delay value. As can be observed in Table 2Talde 3,
the radix-16 multiplier is that present the lessweo
consumption compared against the other architexturhis
indicates that the radix-16 represents a near optinpoint
between the studied multipliers, where these discwaan

using optimized Wallace treesVery Large Scale Integration (VLS)
Systems, |IEEE Trans. on Volume 1, Issue 2, June 1992@xd20 —
125.

[6] CHENG-YU, P.; AL-KHALILI, A.J.; LYNCH, W.E; “Low-Paver
Constant-coefficient multiplier generator” . ASS8DC Conference,
2001. In14th Annual 1EEE Int. 12-15 Sept. 2001 Page(s):185 — 189.

[7] TSO-BING, J.; JENG-HSIN, J.; MING-YU, T.; SHEN-FU.HA high

performance function generator for multiplier-baseatithmetic
operations”. ASIC, 2002. Proceedings. 2002 |EEE aA%cific
Conference on 6-8 Aug. 2002 Page(s):331 — 334

[8] QIAN, Yu.; WANG, Dong-Hui;. “A design of regularize multiplier
generator”. ASIC, 2003. Proceedings. 3t International Conference
on Volume 2, 21-24 Oct. 2003 Page(s):1269 - 1232V

[9] TSOI, K. H.; LEONG, P.H. GENDEREN, “A. Mullet - aasllel

multiplier generator”. InField Programmable Logic and Applications,

2005. Int. Conference on 24-26 Aug. 2005 Page(s):&94.

COSTA, E.; BAMPI, S.; MONTEIRO, J.; “A New PipelideArray

Architecture for Signed Multiplication”. IrBymposium on Integrated

Circuits and Systems Design. 2003

[11] KOCH, P. “C Scripting Language —Reference Manual4\4.0”. At
http://csl.sourceforge.net/csldoc/index.htm LastiBion: 2002

[12] OUSTERHOUT, J. K. “Scripting: Higher Level Prograning for the
21st Century” . IEEE Computer Magazine. March 1998

[13] PIEPER, L.; COSTA, E.; ALMEIDA, S.; BAMPI, S.; MONHIRO, J.
Efficient Dedicated Structures for Radix-16 Muligation. In XIV
Iberchip — IWS, 2008

