
RAMAGT – A Tool for Automatic Generation of
Radix-2m Array Multipliers

Jaccottet, Diego P.; Pieper, Leandro Z.; Costa, Eduardo A.; Almeida, Sérgio J.
Universidade Católica de Pelotas

diego_porto_j@yahoo.com , leandrozaf@pop.com.br, {ecosta,smelo}@ucpel.tche.br

Abstract— This paper presents a new Automatic Generation
Tool (RAMAGT) that generates Radix-2m Array Multipliers. With
the increase of digital systems complexity, textual descriptions of
the circuits became very hard to be made by hand. This problem
can be solved by using tools that can automatically generate textual
description of digital circuit. As multiplication is a common
operation in many digital circuits such as Digital Signal Processors
for example, it has motivated us to create a tool that generates
multiplier circuit descriptions for VHDL (VHSIC Hardware
Description Language) and BLIF (Berkeley Logic Interchange
Format) formats automatically. This tool generates n bit wide
multiplier circuits operating on group of m bits of the Radix-2m
Array Architecture. To validate the multipliers generated by the
RAMAGT tool we have used SIS (A System for Sequential Circuit
Synthesis) and SLS (Switch Level Simulator) environments.

I. INTRODUCTION

Multiplier modules are common to many DSP applications
and general purpose processors. The state of the art has pointed
to multipliers that can operate on 64-bit wide, which is very
hard to describe by hand due to the complexity of this type of
circuit. As circuit designers do not have any time to spend
making the circuit textual description by hand, mainly due to
the time-to-market aspect, thus it is very important to develop
tools that can automatically generate state of the art of digital
circuits. In this work we propose a RAMAGT tool that can
generate descriptions of radix-2m array multiplier circuits
automatically.

 The multipliers generated by the RAMAGT tool were
proposed by [1] and consists of pure array multipliers that can
operate on 2’s complement and use a radix-2m encoding to
reduce the partial product lines. The RAMAGT tool can
generate BLIF (Berkeley Logic Interchange Format) [2] and
VHDL descriptions of n-bit wide multipliers automatically.
Besides, binary and hybrid encoding can be used on group of m
bits. The hybrid encoding can reduce the glitching activity
along the array multiplier and this encoding can be set in the
RAMAGT tool when low power multipliers design are taken
into account. Another important aspect of the tool is the
possibility of enabling different group of m-bit operation in the
array multipliers easily. This aspect enables the array multiplier
to reduce significantly the number of partial product lines. In
this work, we have limited the generation of multipliers to
group of m=6 and thus, the multipliers can operate on the
maximum of radix-64.

While the BLIF description enables the design of the
multipliers at the gate level, the VHDL description enables the
multipliers to be synthesized onto FPGAs. With this flexibility
proposed by the RAMAGT tool, the designer can choose the
most adequate design environment depending on the metrics to
be considered (area, performance or power). Besides, another
important issue is that commercial tools such as Mentor
Graphics [3] accept BLIF and VHDL as input descriptions in
its flow [4].

II. RELATED WORKS

A lot of work has focused in the development of automatic
generators of multiplier circuits. In [5] it is proposed a M-bit by
N-bit Booth encoded parallel multiplier generator. In [6] a new
low-power constant multiplier with a generator written in C++
is used to generate technology-independent VHDL code of the
constant multiplier for different input specifications. In [7] an
automatic hardware generator is developed for computing
multiplier-based arithmetic functions where verilog codes are
generated. In [8] a regularized multiplier generator is proposed
creating VHDL descriptions for signed and regular multiplier.
One of the most significant publications is presented in [9],
where a module generator called Mullet is presented to produce
a near-optimal parallel multipliers, creating multipliers
architectures that broken down into a partial product generator
(PPG) and a partial product summer (PPS). The tool can also
be used to explore tradeoffs between architectures. Although
the great amount of tools to generate automatic descriptions of
multipliers present in literature, none of them has taken into
account the flexibility of generating another textual description
rather than VHDL or Verilog. Besides, neither of them
considers another operand encoding rather than binary. In our
tool, radix 2m hybrid array multipliers are generated
automatically as a way of reducing the switching activity along
the array, and thus enabling low power design.

III. OVERVIEW OF THE RADIX-2m
 ARRAY MULIPLIER

In this section we summarize the methodology of [1] for the
generation of regular structures for arithmetic operators using
signed radix-2m representation.

For the operation of a radix-2m multiplication, the operands
are split into groups of m bits. Each of these groups can be seen
as representing a digit in a radix-2m. Hence, the radix-2m

multiplier architecture follows the basic multiplication
operation of numbers represented in radix-2m in 2’s
complement.

This operation is illustrated in Figure 1, for a radix-16
multiplication example. For the n-m least significant bits of the
operands unsigned multiplication can be used. The partial
product modules at the left and bottom of the array need to be
different to handle the sign of the operands.

For this architecture, three types of modules are needed.
Type I are the unsigned modules. Type II modules handle the
m-bit partial product of an unsigned value with a 2’s
complement value. Finally, Type III modules that operate on
two signed values. Only one Type III module is required for

any type of multiplier, whereas 2 2n
m

− Type II modules and

()2
1n

m
− Type I modules are needed.

Figure. 1 - Example of a 2's complement 8-bit wide radix-16 multiplication

IV. RADIX-2m
 ARRAY MULTIPLIER GENERATION

The RAMAGT tool can generate textual descriptions to n
bit wide multiplier circuits. The wide of the operands is
selected by the user as will be after presented in Section VI.
Another variable, named m, is also available for the user and it
represents the number of group of bits that is multiplied at a
time. The range of m values that we are presenting in this work
can varies from m=2 (radix-4) until m=6 (radix-64). Although
we have presented results until m=6, the tool can naturally
generate higher radices multipliers. In the array multiplier
architecture, the operands are split into group of m bits. Thus,
the number of operands (x) depends on the values of n and m
and its calculation is given according to the Equation 1.

m

n
x = (1)

As should be observed, each operand represents an
operation of m x n. Thus, if the value of x is an integer number,
the structure of the array multiplier will be composed by x
operands. As should be also observed, the Equation 1 can also
be used in order to calculate the number of dedicated
multiplication blocks into each operand. As an example, if a
16-bit multiplier is generated to operates on radix-16 (m=4),
thus the number of operands is equal to 4. Thus, the general
architecture will be composed by 16 m=4 dedicated
multiplication blocks.

When the value of x in Equation (1) does not represents an
integer number, the RAMAGT tool calculates a temporary
value for n named n_temp that is presented showed in Equation
(2). This temporary value is needed to calculate the number of
asymmetrical of dedicated multiplication blocks. As should be
observed in Equation (2), the term int represents the integer
part of x calculated by Equation 1.

()()_ int 1n temp m x= × + (2)

This strategy is needed to calculate the size of the
asymmetrical block (fb). This is made according to the
Equation (3).

()ntempnmfb −−= _ (3)

The number of m x fb blocks is defined as fc and
calculated according to Equation (4). The term int(x) is
multiplied by 2 in (4), because the two operands will be
multiplied by the fb terms.

2 int()fc x= × (4)

As an example, if we need to generate a n=16 and m=3
multiplier architecture the values of n_temp= 18 and fb=1,
according to the Equation (2) and (3). So, the description of the
multiplier will need ten 3x1 (fc) and one 1x1 (fb x fb) blocks in
this architecture. As should be observed, independent of the
size of the operands, we will ever need only one fb x fb block,
because this represents the multiplication of the last most
significant bits. Those blocks are previously designed and they
are available in the library of the RAMAGT tool. In Figure 2 it
is shown an example of the structure of an array multiplier with
m=3 and n=4 bit wide.

Figure. 2 - An array multiplier for 4-bit wide and m=3

As can be observed in Figure 2 the structure of an array
multiplier for 4-bit wide and m=3 need one block 3x3
(calculated by int(x)), two blocks (calculated by fc) 3x1 (m x
fb) and one block 1x1 (fb x fb).

V. METHODOLOGY

In this section we will briefly show how the RAMAGT tool
was developed. The tool was implemented by using two
programming languages. One of them is C++ that generates
executable files in a faster way. The other is the CSL (C
Scripting Language) [11] that is a powerful and easy
programming language that follows the C syntax very closely
and it is used like an interpreter. A language that uses scripts
has the advantage that the code does not need to be compiled
[12], so that the projects can be easily generated. The C++
language is used to link the interface of the projects

requirements with the user. It allows that many different
projects can be done at the same time.

In Figure 3 we show the methodology used to generate a
multiplier description. The main program executes the
secondary one with the language format as parameter (BLIF or
VHDL), allowing multiple secondary programs with different
parameters and languages to be opened at the same time. The
secondary program lists the tree of projects for the given
language and it executes the selected project from the tree with
the given parameters set. It will execute according to the
configuration of the language (a configuration file on the
language folder includes the way it will execute, its extension
and the description for the language). It will also send the
locations for the project to execute appropriately. The project
folders contain the files to be executed and any extra files (the
main CSL executable and its companions may require to
execute appropriately). It also contains the notes on the project
and a file describing the parameters and initial values for them.

Figure 3. Methodology used to create the RAMAGT tool

VI. THE RAMAGT TOOL

In this section we present the steps in the RAMAGT tool to
generate multiplier descriptions of radix-2m array architectures.
The main screen of the RAMAGT tool is presented in fig. 4. In
this screen we can select the format of the multiplier circuit
description (BLIF or VHDL). It should be observed that a good
characteristic of this tool is that we can make many projects at
the same time.

Figure 4. RAMAGT main screen

Once we have selected the textual description format for the
multipliers, another window is opened and then we will able to
select the number of groups of bits (m) and the length of the
operands, as it is shown in Figure 5. After that we just click on
“Generate” button, and it will be created a folder in the current
path called “Projects” where will be contained the files with the
textual description of the multiplier. To validate the
descriptions created by the tool we introduce the VHDL files in
Quartus II from Altera or the BLIF format in SIS environment.

Figure 5. Selection of the type of group of m bits

 Examples of VHDL and BLIF descriptions from 4-bit,

m=2 array multiplier generated by RAMAGT tool are
presented in Figures 6 and 7. For simplicity of the Figures we
have not shown the operand1 and operand2 that are subcircuits
of the array architecture.

Figure 6 - VHDL format example

Figure 7 - BLIF format example

VII. PERFORMANCE RESULTS

In this section will be presented results for n=16 and 32-bit
multiplier architectures on radix 4,8,16, 32 and 64 of the
radix-2m array multipliers that were generated by RAMAGT
tool. The results are presented by considering BLIF
descriptions format. Area, delay and power consumption
results are presented for the 16 and 32-bit multiplier
architectures. Area and delay were obtained by using SIS tool
and power results were obtained with SLS tool, after
converting BLIF to SLS format. This is made by a blif2sls
converter. Area results are presented in terms of number of
literals. Delay results were obtained using the worst delay
propagation between the input and output signals. Power
results were obtained by using the average power value of the
SLS tool [8], by using the general delay model. For the power
simulation we have applied a random pattern signal with
10000 input vectors.

Table 2. Performance results for 16-bit radix-2m array multipliers

Parameters m=2 m=3 m=4 m=5 m=6
Area (Literals) 4602 8382 14983 33452 61758

Delay (ns) 227,80 218,50 206,20 234,50 322,70
Power (W) 0,2414 0,2315 0,2292 0,3748 0,5144

Table 3. Performance results for 32-bit radix 2m array multipliers

Parameters m=2 m=3 m=4 m=5 m=6
Area

(Literals)
18586 31849 61935 131061 325885

Delay (ns) 478,20 448,50 431,40 458,90 536,10
Power (W) 2,5231 1,6609 1,4635 1,8387 2,9470

As can be observed in Table 2 and Table 3, the 16 and 32-

bit multipliers present higher area values according to the
growth of the radix operation. This occurs because as the
higher radix operation of the multipliers, higher is the
complexity presented by the dedicated multiplication blocks.
While the radix 4 dedicated multiplication block is
implemented by using only 8 logic gates, for the radix-64
more than 5.000 logic gates are needed to implement the
dedicated multiplication block. This justifies the large
difference of area presented by the 16 and 32-bit multipliers
according to the m value used.

In terms of delay it should be observed that the multipliers
on radix-16 are that present the best result among the
architectures. In fact, from radix-4 to radix-16 the critical path
decrease because there is a reduction of partial product lines
and the dedicated modules are more simple to be
implemented. Although the radix-32 and radix-64
multiplication blocks enable the reduction of partial product
lines of the multipliers, these blocks are more complex to be
implemented and thus, the higher complexity of these modules
do not enable reduction in the critical path and consequently in
the delay value. As can be observed in Table 2 and Table 3,
the radix-16 multiplier is that present the less power
consumption compared against the other architectures. This
indicates that the radix-16 represents a near optimum point
between the studied multipliers, where these circuits can

operate with higher performance and power reduction. In
terms of power reduction we have observed that the reduction
of glitching activity is the main aspect of power reduction in
the 16 and 32-bit radix-16 array multipliers.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a new RAMAGT tool for the automatic
generation of radix-2m array multiplier. The tool generates
automatically BLIF or VHDL descriptions of n bit and m group
of bits of array multipliers. The circuit descriptions enable that
the multipliers can be synthesized to FPGAs (VHDL
description) or at gate level by using SIS environment (BLIF
description). We presented area, delay and power results from
16 and 32-bit array multipliers operating on different radices.
These multipliers were generated by RAMAGT in BLIF
description format and the results showed that the radix-16
multipliers presented the higher performance and the less
power consumption. As future work we intend to present
results of the multipliers with Hybrid encoding. We also intend
to introduce in the RAMAGT new architectures of multipliers
that use the low power techniques proposed by [13].

REFERENCES
[1] COSTA, E.; MONTEIRO, J.; BAMPI, S. “A New Architecture for

Signed Radix 2m Pure Array Multipliers” . In IEEE International
Conference on Computer Design, pages 112-117, 2002.

[2] BERKELEY, U. BLIF – “Berkeley Logic Interchange Format”.
University of California. At http://embedded.eecs.berkeley.edu/ . 2007.

[3] GRAPHICS, M.; “QuickPath User’s and Ref. Manual.” Mentor
Graphics. At http://www.mentor.com . 2008.

[4] OLIVEIRA, L. L.; “Prototipação e Análise de Circuitos Multiplicadores
Array de Baixo Consumo”. Dissertação de Mestrado. PPGEE. UFSM,
RS. 2005.

[5] FADAVI-ARDEKANI, J. “M×N Booth encoded multiplier generator
using optimized Wallace trees”. Very Large Scale Integration (VLSI)
Systems, IEEE Trans. on Volume 1, Issue 2, June 1993 Page(s):120 –
125.

[6] CHENG-YU, P.; AL-KHALILI, A.J.; LYNCH, W.E; “Low-Power
Constant-coefficient multiplier generator” . ASIC/SOC Conference,
2001. In 14th Annual IEEE Int. 12-15 Sept. 2001 Page(s):185 – 189.

[7] TSO-BING, J.; JENG-HSIN, J.; MING-YU, T.; SHEN-FU H.. “A high
performance function generator for multiplier-based arithmetic
operations”. ASIC, 2002. Proceedings. 2002 IEEE Asia-Pacific
Conference on 6-8 Aug. 2002 Page(s):331 – 334

[8] QIAN, Yu.; WANG, Dong-Hui;. “A design of regularized multiplier
generator”. ASIC, 2003. Proceedings. In 5th International Conference
on Volume 2, 21-24 Oct. 2003 Page(s):1269 - 1272 Vol.2

[9] TSOI, K. H.; LEONG, P.H. GENDEREN, “A. Mullet - a parallel
multiplier generator”. In Field Programmable Logic and Applications,
2005. Int. Conference on 24-26 Aug. 2005 Page(s):691 - 694.

[10] COSTA, E.; BAMPI, S.; MONTEIRO, J.; “A New Pipelined Array
Architecture for Signed Multiplication”. In Symposium on Integrated
Circuits and Systems Design. 2003

[11] KOCH, P. “C Scripting Language –Reference Manual V. 4.4.0”. At
http://csl.sourceforge.net/csldoc/index.htm Last Revision: 2002

[12] OUSTERHOUT, J. K. “Scripting: Higher Level Programming for the
21st Century” . IEEE Computer Magazine. March 1998

[13] PIEPER, L.; COSTA, E.; ALMEIDA, S.; BAMPI, S.; MONTEIRO, J.
Efficient Dedicated Structures for Radix-16 Multiplication. In XIV
Iberchip – IWS, 2008

