VHDL MODELLING OF THE MAC-1 ARCHITECTURE

Giuliano de Souza Vilela Cid!

IInformatic and Applied Mathematics Department (DIMAp)
Universidade Federal do Rio Grande do Norte (UFRN). Natal/RN, Brasil.

IE-mail: giulianoxt@gmail.com

ABSTRACT

This paper presents a VHDL model specification for
the MAC-1 architecture proposed by Andrew
Tanenbaum in [1]. The model takes different approaches
from the ones originally designed in respect to the
control logic and the final design. It's also shown how the
development and testing process ocurred using the Altera
Quartus II software and a FPGA board.

1. OVERVIEW OF THE MAC ARCHITECTURE

The MAC-1 architecture, as Tanenbaum presents it, is a
multicicle machine consisting in a small instruction set, a
group of registers, an ALU and three internal buses. Both
data and instruction buses are 16 bits wide. It's very
simple design is not oriented towards efficiency, hence
it's use is more expressive as a academic tool for
teaching in computer architecture introductory courses.

This architecture is refined in two main blocks:
operative block and control unit. These two define an
interface between them, with the control unit sending
control signals to the operative block, determining the
current state of the processor.

1.1. Operative block

This block is responsible for all the logic, arithmetic,
memory-based and register aware operations. It contains
the basic blocks upon wich the main architecture is built,
and where all the elementary operations upon data are
done, using only a few registers and a single ALU. From
the outside, the MAC architecture instruction set doesn't
expose the details of this component: in fact, only two
registers are visible to the outside programmer.

From the inside, the data path designed by
Tanenbaum is very simple and leads to an elegant and
concise stack based platform.

This block executes instructions that come from the
memory under a certain bus. From there, the programmer
can work with an acumulator (AC) register, where
temporary data can be stored while it's needed in the
operative block, and with an stack point (SP) register.
With SP comes the ability to push and pop data from a
certain memory region. The main design is shown in the
following picture.

A B
—> PC_ [
> A -
™ SP Al
— IR [ R
> TIR [ . N
— 0 —
» 1 — M
| -1 —*
— R
> EE F A
Z=
N ALU
4—~
C bus

[lustration 1: Data path - operative block

Values and instructions are constantly moved
between the 3 buses, the memory and the registers,
according to the current state of the processor. Data is
operated in the ALU, wich performs addition,
subtraction, binary and / or and negation. Addresses of
memory positions must be put in the MAR (Memory
Address Register) register so that the position can be
either read or written. Values that were read from
memory come from the MBR (Memory Bus Register)
register.

The AC register is the main placeholder for the
architecture. Almost all instructions use it in one way or
another, from the destination of the result of a calculation
to being the holder of a memory address to be read or
written. For simplicity, all the signals hooked up to the
operative block, coming from the control unit, are
missing from Illustration 1.

1.2. Control unit

The control unit is responsible for sending control signals
to all the components of the architecture. It's designed
with correctness and efficiency in mind, leading to a few
different modelling approaches. The control unit holds
the current state of the processor, and knows how to
instruct the operative block about the operation to be
performed in the current cycle. In [1] it's shown a



microprogramming approach to the implementation of
the MAC-1 control unit.

The basic idea is that, to control the underlying
architecture, called MIC-1, that supports the MAC-1
instruction set we could make a small interpreter for a
micro-instruction set that controls the operative block.
Then, we could store a small microprogram in a memory
inside the control unit. With it's own sequential logic and
well defined behaviour, this microprogram would run
“forever”, interpreting the MAC instruction set and, at
each clock step, interpreting a single MIC-1 micro-
instruction and generating a bigger set of control signals
to rule how the architecture is currently executing a
MAC-1 instruction.

1.3 The MAC-1 instruction set

The VHDL specification that was made supports the
entire instruction set designed in [1]. For brevity, what is
shown here is only a subset of the original (without the
encodings for the instructions).

Mnemonic Semantics

lodd x; ac := m[x];
stod x; m[x] := ac;
addd x; ac := ac + m[x];
subd x; ac := ac - m[x];
jpos x; if ac >= 0: pc := x;
jump x; pc = X;
loco x; ac := x;
lodl x; ac := m[sp + x];
stol x; m[sp + x] := ac;
pshi x; sp := sp - 1;
m[sp] := m[ac];
popi x; mlac] := m[spl;
sp := sp + 1;
swap; tmp := ac; ac := sp;
sp := tmp;

Table 1: MAC-1 instruction set
2. SPECIFICATION DETAILS

Although simple and efficient, the microprogramming-
based implementation design proposed in [1] has some
problems. Let's take for example a single micro-
instruction, wich might look like this using a pseudo
notation:

mar := ir; mbr

This single micro-instruction states how the MIC-1
underlying architecture will behave at a single clock step.
It is stored in the microprogram memory as a set of
control signals (written as signal:value, where signa is a
control signal identification and value is the non-zero
value of that signal):

:= ac; wr;

alu:2; mbr:1; mar:1; wd:1l; b:3; a:1l;

As one can seeg, it is hard to both program in this
micro-language and to read a micro-program. This is due
to the fact that the language isn't designed for human
programming, only to machine interpreting and
execution.

Also, when the microprogram is highly optimized,
we start to see some odd behaviour. The design tends to
get like a pipeline processor, executing steps of two or
more instructions simultaneously, without it actually
being one. This has serious implications when a teacher
wants to present this kind of design to his students.

Taking these and others aspects into account, some
specification decisions where made to simplify the
VHDL code. These will be shown bellow.

2.1. Control unit specification

The control unit design chosen for this specification uses
a finite state machine implementation. This leads to a
common pattern used in VHDL modelling: each state is
represented by a code block in the specification. Both the
current state and the next state being signals of a user
defined type. That way, it was possible to keep the
processor design very simple and intuitive.

Each step taken to decode, execute and store results
of a single instruction is represented by a single
processor state. We are able to see clearly the
interactions between specific states of the processor.

For example, observe the state transition diagram

representing the execution of the following program:
0 : loco x;
1 : exit;

Illustration 2: State transition diagram



The diagram used in Illustration 2 shows the current
state of the processor at each step of the execution of the
program. Under the labels for the states are
corresponding pseudo-codes for each task. Along the
transition edges are numbers, showing the order of
execution of each state. This picture, however, is very
simplified. It doesn't show a decoding state, and assumes
that every instruction can execute itself in just one state.
That is not true. Almost all instructions interpreted by the
processor executes in more than one state / clock cycle.
There is actually a direct mapping from a multicicle
based implementation, meaning that each state can be
seen as a subcycle executing.

Among the advantages of this approach are: code
readability and simplicity, easy debugging, etc. Also, in a
microprogramming approach, the designer has to write,
possibly directly in the VHDL source, the entire
microprogram. It is extensive and not intuitive. The
approach chosen here doesn't present this problem.

2.2. Operative and memory block specification

It is in this part of the specification that most of the high
level funcionality of VHDL, as supported by the Quartus
software, was used. The components described in [1] for
the MAC-1 architecture are mostly of eletronic low level.
By choosing VHDL as the hardware speficiation
language, it was possible to write concise and clean
“high level” code. This way, the Quartus compiler and
optimizer can work on the code and make the best
implementation decisions for the platform chosen (a
Altera FPGA board).

The VHDL libraries and mega-functions provided by
the Quartus software helped in this sense, since they
contained useful implementations for arithmetic
operations, type conversions, etc. Specifically, the
Ipm_ram_dq mega-function was fully used for the
memory block implementation.

2.3. Code snippets

Here I present a small part of the VHDL specification,
divided in several sections. They show the main concepts
and structures used in the development.

2.3.1. Code 1 (Memory block)

component lpm_ram_dg is

generic (
lpm_address_control: string;
lpm_file: string;
lpm_indata: string;
lpm_outdata: string;
lpm_type: string;
lpm_width: natural;
lpm_widthad: natural

)i

port (

outclock in std_logic;

address: in
std_logic_vector (5 downto 0);
inclock: in std_logic;
q: out
std_logic_vector (15 downto 0);
data: in
std_logic_vector (15 downto 0);
we: in std_logic
)i
end component;

This part shows the instanciation of the lpm_ram_dq
megafunction. It provides a convenient RAM
specification to plug.

2.3.2. Code 2 (Operative block)

AcReg: register_n
generic map (data_size)
port map (bar_c,clk,reg_rd(0),ac_val);

SpReg: register_n
generic map (data_size)
port map (bar_c,clk,reg_rd(l),sp_val);

AReg: register_n
generic maE (data_size)
port map (bar_c,clk,reg_rd(2),a_val);

A very small snippet of the operative block code.
Only shows the main instanciations of components
(register), that compose an entity close to Illustration 1.

2.3.3. Code 3 (Control unit state machine)

UpdateState:
process (clk) begin
if (clk'event and clk = '1l') then
st_now <= st_next;
end if;
end process;

ProcessState:
process (st_now) begin
case st_now is

when init => —-- pc := 0;
mem_addr <= (others => 'X');
mem_wr_data <= (others => 'X');
mem_wr <= '0"';
op_aux <= (others => 'X');
op_aux_en <= 'X';
alu_op <= 'X';
alu_out_rd <= '0"';
reg_rd <= (others => '0');
reg_wa <= (others => 'X');
reg_wb <= (others => 'X'");
pc_cond <= "01l1l"; —-- reset

st_next <= fetchO;

The first process represents the mechanism used for
dtate transitions (wich are synchronous and sequential).
The second process shows how the states are
represented. A case statement detects with state is the
current state, and according to that it determines the
behaviour of each state. On the snippet it's shown the init



dtate. It's purpose is to set the initial value for pc and
begin the fetching of instructions on the next clock cycle.
All the others signals wich areirrelevant for this state are
set to X' (don't care value).

2.3.4. Code 4 (Main block)

entity mac_proc is

port (
clk_board: in std_logic;
ac : out

std_logic_vector (15 downto 0);

);...

end mac_proc;

begin

.'épBlock op_block
generic map (16)
port map (

clk,op_aux,op_aux_en,
alu_out_rd,

reg_rd, reg_wa, reg_wb,
alu_op,alu_val,ac_val,sp_val
)i

ControlUnit control
generic map (16, 12)
port map (

clk,

mem_data,mem_wr_data,mem_addr, mem_wr,
op_aux, op_aux_en,
alu_val,ac_val,sp_val,
alu_op,alu_out_rd,
reg_rd, reg_wa,reg_wb
)i
end mac_proc;

This snippet shows the main entity. It glues together
all the components, showing how the signals interact
with each other.

3. SIMULATION AND FINAL TESTING

The simulation and testing process was divided in two
phases: one software-based and the other hardware-
based.

At first, the Quartus software simulation features
where used to debug the VHDL code. The test programs
are currently being stored in a mif (Memory Initialisation
File) file. When the code is compiled, the memory block
is initialized with the contents described in that file. After
that, the code is then simulated using a vector waverform
file, where the final results produced by the simulation
can be seen.

One of the MAC-1 programs used to test the
processor is shown bellow. It is written according to the
mif notation used by Quartus.

0 0111000000000010; -- loco 2; .inc_x
1 0001000000111011; -- stod 59;

2 0111000000000000; -- loco O;

3 0001000000111100; -- stod 60; .1

4 0001000000111101; -- stod 61;.x

5 : 0111000000000010; -- loco 2; .lim

6 : 0001000000111110; -- stod 62;

7 : 0111000000000001; —-- loco 1; .inc_ 1

8 0001000000111111; -- stod 63;

9 : 0000000000111100; —-- leodd 60;

10: 0011000000111110; -- subd 62; .1i!=1im?
11: 0101000000010011; —-- jzer 19; .goto 19
12: 0000000000111100; —-- lodd 60;

13: 0010000000111111; —-- addd 63;.1i++

14: 0001000000111100; —-- stod 60;

15: 0000000000111101; -- lodd 61;

16: 0010000000111011; -- addd 59;.x+=incx
17: 0001000000111101; -- stod 61;

18: 0110000000001001; —-- Jjump 9; .goto 9

19: 0000000000111101; -- lodd 61;.show x

20: 1111111111111111; -- exit;

The program is basically a for loop, looking like this
in C notation:

int 1 =0, x =0; for (;1i != 2;1i+=1,x+=2);
The code is then ran into the Quartus simulation tool,
were al the results and internal signals of the
architecture can be seen, as Illustration 3 shows.

i e Gl ]

U }( st_now.decode )( st nowexitl )C

B EHEE
S

Ilustration 3: Output showing ac = 4 (x value)

After that, the processor was tested in a FLEX10K
family Altera FPGA board. The results were aso
successful, with the correct value for x (4) being shown
in a7-segment led display in adecimal notation.

4. CONCLUSION

It was described how the VHDL model for the MAC-1
architecture was made and wich development decisions
were taken. Finally, the result was proved to be
successful using software simulation and a FPGA board,
both Altera tools. Further projects related to this work are
being planned. The idea is to integrate this model in a
higher architecture development environment, focused
on computer organization teaching.

5. REFERENCES

[1] A. S. Tanenbaum, Structured Computer Organization,
Prentice Hall, June 2001.

[2] D. A. Patterson, J. L. Hennessy and P. J. Ashenden,
Computer Organization and Design, Morgan Kauffman,
August 2004.

[3] D. A. Patterson, J. L. Hennessy, Computer Organization: a
Quantitative approach, Morgan Kauffman, May 2002.



	VHDL Modelling oF the mac-1 architecture
	Abstract


