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ABSTRACT 

 

Side-channel attack is any attack based on information 

gained from the physical implementation of a 

cryptosystem. Private-key operations need a due amount 

of time to be performed. Attackers are able to break these 

systems by unmistakably measuring such time, what 

characterizes a timing attack, a kind of side-channel 

attack. Some algorithms for public-key encryption, like 

RSA, exhaustively use the mathematical operation of 

modular exponentiation, which has the modular 

multiplication as basis. Thus, in this paper we compare 

two different methods of modular multiplication by their 

applicabilities in timing attack resistant integrated circuits 

and efficiencies. Furthermore, we implemented three 

algorithms, analyze its faculty for preventing timing 

attacks and provide adequate hardware implementations. 

 

 

1. INTRODUCTION 

 

High level security and data integrity are 

indispensable in order to manage confidential information 

in network applications, such as e-mail and e-banking, 

and in mobile applications, such as embedded security 

and credit card operations. Public Key Cryptography 

(PKC) bases the security on actual digital information 

systems. PKC uses two keys, a "public key" and a 

"private key", to implement an encryption algorithm that 

doesn't require two parties to first start an exchange of a 

secret key in order to conduct secure communications. 

RSA, which was invented by Rivest, Shamir and 

Adleman in 1978 [1], is the most used pattern in PKC. 

The algorithm’s principle based on the construction of 

both public and private keys using big prime numbers 

randomly generated. Any ciphered message that uses 

public key needs its respective private key to be 

deciphered. To achieve this, the following mathematical 

formulas are used:  

 

C = M
E
 mod N ,   (1) 

 

T = C
D
 mod N ,   (2) 

 

where M is the original message, E is the private key, 

C is the ciphered message and D is the public key. 

Because of the magnitude of intermediate results of 

exponentiation using large keys, modular exponentiation 

is not done using the most straightforward method; 

modular multiplication is applied repeatedly instead. A 

modular multiplication, such as, A · B mod M, where A 

and B are the operands and M is the modulus, can be 

performed in two different ways: multiplying then 

reducing or interleaving the multiplication and the 

reduction steps. 

This paper’s purpose is to analyze Montgomery’s 

modular multiplication algorithm [2] as a base for 

modular exponentiation and to compare it to the method 

of multiplying then reducing. Throughout the subsequent 

sections, we will revise some important topics, describe 

the implemented algorithms and analyze its behavior 

under timing attacks as well as its hardware 

implementation feasibility. 

 

2. SIDE-CHANNEL ANALYSIS (TIMING 

ATTACK) 

 

Mathematical models are used to describe 

conventional cryptographic systems. However, some 

events occurring during the cryptography’s 

implementation cannot be exactly described by 

mathematical tools. It permits that attacks may infer the 

secret key by using techniques like reverse engineering 

and micro probing [3]. 

Side-channel attacks are attacks that are based on 

side-channel information. Side-channel information is 

information that can be retrieved from the encryption 

device that is neither the plaintext to be encrypted nor the 

ciphertext resulting from the encryption process. 

Modern encryption devices have plaintext, ciphertext 

and additional inputs and outputs. These devices produce 

information about the length of time that operations take, 

radiation of various sorts and power consumption 

statistics [4]. Often the voltage inputs can be modified to 

cause predictable outcomes. By making use of this 

information and other known cryptanalytic techniques, 

attackers may recover the key the device is using. 

Reasons like bypassing unnecessary operations, 

branching and conditional statements, RAM cache hits 

and processor instructions that do not run in fixed time 

are responsible for different amount of time to process 

different inputs. Timing attacks are based on measuring 

and computing variances of these amounts of time. The 

attack can be tailored to work with virtually any 

implementation that does not run in fixed time and 

assumes that the attacker knows the design of the target 

system (although in practice this could probably be 

inferred from timing information). Details about how 



general attacks happen, including the statistical models 

used, are shown in [4]. 

 

3. MODULAR MULTIPLICATION 

 

The modular multiplication is used to perform 

modular exponentiations, which, in their turn, are used by 

several public-key cryptosystems. The performance of 

public-key cryptosystems is primarily determined by the 

implementation’s efficiency of the modular 

exponentiation. So, consequently, modular multiplication 

is an important factor in these systems. 

There are two basic methods of performing a modular 

multiplication: multiply-then-reduce and interleaved 

multiplication and reduction. 

 

3.1. Multiply-then-Reduce Method 

 

The multiply-then-reduce method consists of first 

computing the product then reducing it with respect to the 

given modulus. Insofar, as it is an elementary multiplying, 

many algorithms, like add-and-shift, for example, may be 

used. The most popular multiplication methods are 

Karatsuba-Ofman’s method and Booth’s method [5].  

A modular reduction is simply the computation of the 

remainder of an integer division. The naive sequential 

algorithms successively shifts and subtracts the modulus 

until a non-negative and smaller value than the modulus 

remainder is found. More complex algorithms, which 

minimize the number of compare-and-subtract steps and, 

consequently, maximize the complete operation’s speed, 

may also be implemented. As an example, we can quote 

the multiply-then-reduce Barrett’s algorithm. Modular 

reduction is always dependent of inputs and intermediate 

results, which is the main cause of timing variations in a 

modular operation. 

Modular multiplications consume most of the total 

modular exponentiation time. As a result of timing 

variations of reduction steps, multiply-then-reduce 

method is more vulnerable to timing attacks. Three 

multiplying algorithms were used for implementing the 

modular multiplication, as described in subsequent 

sections. 

 

3.1.1 The Add-and-Shift Algorithm 

The add-and-shift algorithm of multiplication is 

performed using only add and shift operations. The partial 

product starts in zero and then each multiplier’s bit is 

processed at a time. The multiplicand is added to partial 

product if that bit is set and, at the ending of this process, 

the partial product is right-shifted. 

Here, the reduction step is implemented with 

successive subtractions until the result is less than the 

modulus. 

 

 

 

 
Figure 1: Montgomery’s modular multiplication algorithm 

 

3.1.2 The Booth’s Algorithm 

The Booth’s algorithm is also performed with partial 

products, but it uses several partial product generators 

together with several adders that operate in parallel. Each 

partial product obtained is shifted left or right depending 

on whether the starting bit was the less or the most 

significant and added up. The number of partial products 

generated is bound above by the size of the multiplier 

operand. So, once the sum of the partial products is 

obtained, the rest of this sum is finally the result of the 

multiplication. 

Likewise the previous algorithm, the reduction step 

will be implemented with successive subtractions. 

 

3.2. Interleaved Multiplication and Reduction Method 

 

 The idea of interleaving multiplication and reduction 

steps is very simple: the first operand is multiplied with 

the second operand bitwise and added to the intermediate 

result. Then the intermediate result is reduced with 

respect to the modulus. 

 The naive interleaved multiplication and reduction 

method is implemented with subtractors, just like is done 

with multiply-then-reduce method. 

However, this is not the best way to yield results with 

no timing variations; insofar it has the same above 

method’s problem of depending on the number of 

compare-and-subtract steps. More sophisticated methods 

are also widely implemented. The most popular are 

Montgomery’s [2] and Brickell’s [6] methods. 

Montgomery’s algorithm will be described in the section 

bellow. 

 

3.2.1 The Montgomery’s Algorithm 

The Montgomery’s algorithm of multiplication of is a 

very ingenious method of calculating the modular 

multiplication. It replaces the division by adding a shift 

and modulate, if necessary, which are much faster to your 

computer. Furthermore, the algorithm is best suited for 

implementation in hardware (FPGA / ASIC). 



 
Figure 2: Add-and-Shift multiplier architecture 

 

 
Figure 3: Booth’s multiplier architecture 

 

The multiplication of modular Montgomery calculates 

MM(X,Y) = XYR-1 mod m, where m is an integer in the 

interval 2
n-1

 ≤ m < 2
n
 such that MDC(m,R) = 1 (this 

requirements is satisfied if m odd). 

Following [5], we implemented a multiplication based 

on an iterative adder-accumulator for the generated partial 

products, as shown in the algorithm of Figure 1. 

Nowadays, many other implementations of 

Montgomery’s modular multiplication are known. Some 

of them may be found in [7]. 

 

4. HARDWARE IMPLEMENTATION 

 

This section describes essentially the synthesis and 

simulation of the targeted architecture coded with 

hardware description languages. The design capture of the 

modular multiplication’s architectures using VHDL and 

Verilog was done for 32, 128 and 1024 bits. 

Consisting of an adder, an accumulator, a shifter and 

the controller, as shown in Figure 2, a naive add-and-shift 

architecture was implemented. 

Following a similar flow, Booth’s architecture was 

implemented using partial product generators, adders and 

an accumulator, as shown in Figure 3. 

According to [5], we used a given architecture (shown 

in Figure 4) to build our own VHDL source code. Shift 

registers, adders, multiplexers, registers and a controller 

were used. Except for the controller, which does the 

management work, all other blocks are responsible for 

every mathematical computation. 

This algorithm computes the product of two integers 

modulus a third one without performing division by M. It 

yields the reduced product using a series of addition. 

 

 
Figure 4: Montgomery’s modular multiplier architecture 

 

 

5. IMPLEMENTATION RESULTS AND 

COMPARISON 

 

Implementation results of our three architectures, 

which were implemented on a Xilinx FPGA XC4VFX12, 

are shown in the following tables. Table 1 compares the 

timing operation, showing the maximum workable 

frequencies and minimum workable periods; Table 2 

compares the device utilization by the number of used 

FPGA configurable logic block slices and its 

representative percentage. For each architecture three bit 

lengths (32, 128 and 1024) were tested. Add-and-shift 

method, Booth’s and Montgomery’s methods are 

represented in the tables by A&S, Booth and MG, 

respectively. In order to synthesize and simulate we used 

Xilinx ISE 9.2 and Cadence NC-Sim software. 

As major part of this work, timing analysis was done 

comparing results of two basic modular multiplications. 

Utilizing the implemented 32 bits architectures, the 

response times will be measured to present its variation 

(or its lack of variation). However, in cryptosystems, 

operands are quite large (as 1024 bits) as they represent 

blocks of text. So this comparison will be barely useful to 

illustrate the response time variation. 

 First, we applied operands A = 13 and B = 25 and 

modulus M = 97. Then, we applied A = 111, B = 86 and 

M = 113. The results are given in Table 3. Note that in 

the first modular multiplication the reduction step will 

subtract less times than in the second modular 

multiplication. 

Considering the results above, we perceived that the 

Booth’s method, in spite of slower response, is better than 

add-and-shift method, because of its less FPGA usage. 

However, due to the variations of response times, 

Montgomery’s method (and so the interleaved 

multiplication and reduction method) is better than the 

others for public-key encryption applications. 

 

 



Table 1: Maximum frequency and minimum period 

depending on the bit length. 

 

Method Operand size Max. Freq. Min. Period 

32 140MHz 7.135ns 

128 62MHz 16.080ns A&S 

1024 10MHz 98.811ns 

32 221MHz 4.511ns 

128 113MHz 8.783ns Booth 

1024 20MHz 48.656ns 

32 532MHz 1.878ns 

128 465MHz 2.150ns MG 

1024 303MHz 3.298ns 

 

Table 2: FPGA configurable logic block slices’ usage 

(out of 5472) depending on the bit length. 

 

Method Operand size # Slices Percentage 

32 260 4% 

128 1068 19% A&S 

1024 8190 149% 

32 106 1% 

128 433 7% Booth 

1024 3496 63% 

32 185 3% 

128 654 11% MG 

1024 5038 92% 

  

Table 3: Response times of modular multiplications on 

our three architectures with common clock cycles. 

 

Method Mod. Mult. Time 

13 · 25 mod 97 65ns 
A&S 

111 · 86 mod 113 450ns 

13 · 25 mod 97 216ns 
Booth 

111 · 86 mod 113 702ns 

13 · 25 mod 97 1174ns 
MG 

111 · 86 mod 113 1174ns 

 

Is important to realize that the Montgomery’s 

algorithm is relatively not good for small bit lengths, but 

behaves stably for large bit lengths. In contrast, multiply-

then-reduce method behaves extremely badly for large bit 

lengths: sometimes is quick and sometimes bring results 

exceptionally slowly. Besides the problem of becoming a 

slow calculation, this inconstancy causes the variation in 

response time, that is the information used by attackers 

for a timing attacks. 

  

6. CONCLUSION AND FURTHER WORK 

 

We presented three modular multiplication methods 

that bring different implementation results. After 

analyzing the results presented in the last section we 

conclude that, under the side-channel attacks perspective 

(timing attacks in particular), the Montgomery’s method 

came across being very resistant.  

 

 

As a future work we will implement a complete circuit 

of RSA encryption algorithm using the Montgomery’s 

algorithm described above. We are also inclined to make 

improvements in our design for performance and area 

optimization. 
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