
MODULAR MULTIPLICATION ALGORITHM FOR PKC

Diego Viot, Rodolfo Aurélio, Helano Castro and Jardel Silveira

Universidade Federal do Ceará, LESC

Campus do PICI S/N, Bloco 723

Fortaleza, CE – Brasil
E-mail: {diego, rodolfo, helano, jardel}@lesc.ufc.br

ABSTRACT

Side-channel attack is any attack based on information

gained from the physical implementation of a

cryptosystem. Private-key operations need a due amount

of time to be performed. Attackers are able to break these

systems by unmistakably measuring such time, what

characterizes a timing attack, a kind of side-channel

attack. Some algorithms for public-key encryption, like

RSA, exhaustively use the mathematical operation of

modular exponentiation, which has the modular

multiplication as basis. Thus, in this paper we compare

two different methods of modular multiplication by their

applicabilities in timing attack resistant integrated circuits

and efficiencies. Furthermore, we implemented three

algorithms, analyze its faculty for preventing timing

attacks and provide adequate hardware implementations.

1. INTRODUCTION

High level security and data integrity are

indispensable in order to manage confidential information

in network applications, such as e-mail and e-banking,

and in mobile applications, such as embedded security

and credit card operations. Public Key Cryptography

(PKC) bases the security on actual digital information

systems. PKC uses two keys, a "public key" and a

"private key", to implement an encryption algorithm that

doesn't require two parties to first start an exchange of a

secret key in order to conduct secure communications.

RSA, which was invented by Rivest, Shamir and

Adleman in 1978 [1], is the most used pattern in PKC.

The algorithm’s principle based on the construction of

both public and private keys using big prime numbers

randomly generated. Any ciphered message that uses

public key needs its respective private key to be

deciphered. To achieve this, the following mathematical

formulas are used:

C = M
E
 mod N , (1)

T = C
D
 mod N , (2)

where M is the original message, E is the private key,

C is the ciphered message and D is the public key.

Because of the magnitude of intermediate results of

exponentiation using large keys, modular exponentiation

is not done using the most straightforward method;

modular multiplication is applied repeatedly instead. A

modular multiplication, such as, A · B mod M, where A

and B are the operands and M is the modulus, can be

performed in two different ways: multiplying then

reducing or interleaving the multiplication and the

reduction steps.

This paper’s purpose is to analyze Montgomery’s

modular multiplication algorithm [2] as a base for

modular exponentiation and to compare it to the method

of multiplying then reducing. Throughout the subsequent

sections, we will revise some important topics, describe

the implemented algorithms and analyze its behavior

under timing attacks as well as its hardware

implementation feasibility.

2. SIDE-CHANNEL ANALYSIS (TIMING

ATTACK)

Mathematical models are used to describe

conventional cryptographic systems. However, some

events occurring during the cryptography’s

implementation cannot be exactly described by

mathematical tools. It permits that attacks may infer the

secret key by using techniques like reverse engineering

and micro probing [3].

Side-channel attacks are attacks that are based on

side-channel information. Side-channel information is

information that can be retrieved from the encryption

device that is neither the plaintext to be encrypted nor the

ciphertext resulting from the encryption process.

Modern encryption devices have plaintext, ciphertext

and additional inputs and outputs. These devices produce

information about the length of time that operations take,

radiation of various sorts and power consumption

statistics [4]. Often the voltage inputs can be modified to

cause predictable outcomes. By making use of this

information and other known cryptanalytic techniques,

attackers may recover the key the device is using.

Reasons like bypassing unnecessary operations,

branching and conditional statements, RAM cache hits

and processor instructions that do not run in fixed time

are responsible for different amount of time to process

different inputs. Timing attacks are based on measuring

and computing variances of these amounts of time. The

attack can be tailored to work with virtually any

implementation that does not run in fixed time and

assumes that the attacker knows the design of the target

system (although in practice this could probably be

inferred from timing information). Details about how

general attacks happen, including the statistical models

used, are shown in [4].

3. MODULAR MULTIPLICATION

The modular multiplication is used to perform

modular exponentiations, which, in their turn, are used by

several public-key cryptosystems. The performance of

public-key cryptosystems is primarily determined by the

implementation’s efficiency of the modular

exponentiation. So, consequently, modular multiplication

is an important factor in these systems.

There are two basic methods of performing a modular

multiplication: multiply-then-reduce and interleaved

multiplication and reduction.

3.1. Multiply-then-Reduce Method

The multiply-then-reduce method consists of first

computing the product then reducing it with respect to the

given modulus. Insofar, as it is an elementary multiplying,

many algorithms, like add-and-shift, for example, may be

used. The most popular multiplication methods are

Karatsuba-Ofman’s method and Booth’s method [5].

A modular reduction is simply the computation of the

remainder of an integer division. The naive sequential

algorithms successively shifts and subtracts the modulus

until a non-negative and smaller value than the modulus

remainder is found. More complex algorithms, which

minimize the number of compare-and-subtract steps and,

consequently, maximize the complete operation’s speed,

may also be implemented. As an example, we can quote

the multiply-then-reduce Barrett’s algorithm. Modular

reduction is always dependent of inputs and intermediate

results, which is the main cause of timing variations in a

modular operation.

Modular multiplications consume most of the total

modular exponentiation time. As a result of timing

variations of reduction steps, multiply-then-reduce

method is more vulnerable to timing attacks. Three

multiplying algorithms were used for implementing the

modular multiplication, as described in subsequent

sections.

3.1.1 The Add-and-Shift Algorithm

The add-and-shift algorithm of multiplication is

performed using only add and shift operations. The partial

product starts in zero and then each multiplier’s bit is

processed at a time. The multiplicand is added to partial

product if that bit is set and, at the ending of this process,

the partial product is right-shifted.

Here, the reduction step is implemented with

successive subtractions until the result is less than the

modulus.

Figure 1: Montgomery’s modular multiplication algorithm

3.1.2 The Booth’s Algorithm

The Booth’s algorithm is also performed with partial

products, but it uses several partial product generators

together with several adders that operate in parallel. Each

partial product obtained is shifted left or right depending

on whether the starting bit was the less or the most

significant and added up. The number of partial products

generated is bound above by the size of the multiplier

operand. So, once the sum of the partial products is

obtained, the rest of this sum is finally the result of the

multiplication.

Likewise the previous algorithm, the reduction step

will be implemented with successive subtractions.

3.2. Interleaved Multiplication and Reduction Method

 The idea of interleaving multiplication and reduction

steps is very simple: the first operand is multiplied with

the second operand bitwise and added to the intermediate

result. Then the intermediate result is reduced with

respect to the modulus.

 The naive interleaved multiplication and reduction

method is implemented with subtractors, just like is done

with multiply-then-reduce method.

However, this is not the best way to yield results with

no timing variations; insofar it has the same above

method’s problem of depending on the number of

compare-and-subtract steps. More sophisticated methods

are also widely implemented. The most popular are

Montgomery’s [2] and Brickell’s [6] methods.

Montgomery’s algorithm will be described in the section

bellow.

3.2.1 The Montgomery’s Algorithm

The Montgomery’s algorithm of multiplication of is a

very ingenious method of calculating the modular

multiplication. It replaces the division by adding a shift

and modulate, if necessary, which are much faster to your

computer. Furthermore, the algorithm is best suited for

implementation in hardware (FPGA / ASIC).

Figure 2: Add-and-Shift multiplier architecture

Figure 3: Booth’s multiplier architecture

The multiplication of modular Montgomery calculates

MM(X,Y) = XYR-1 mod m, where m is an integer in the

interval 2
n-1

 ≤ m < 2
n
 such that MDC(m,R) = 1 (this

requirements is satisfied if m odd).

Following [5], we implemented a multiplication based

on an iterative adder-accumulator for the generated partial

products, as shown in the algorithm of Figure 1.

Nowadays, many other implementations of

Montgomery’s modular multiplication are known. Some

of them may be found in [7].

4. HARDWARE IMPLEMENTATION

This section describes essentially the synthesis and

simulation of the targeted architecture coded with

hardware description languages. The design capture of the

modular multiplication’s architectures using VHDL and

Verilog was done for 32, 128 and 1024 bits.

Consisting of an adder, an accumulator, a shifter and

the controller, as shown in Figure 2, a naive add-and-shift

architecture was implemented.

Following a similar flow, Booth’s architecture was

implemented using partial product generators, adders and

an accumulator, as shown in Figure 3.

According to [5], we used a given architecture (shown

in Figure 4) to build our own VHDL source code. Shift

registers, adders, multiplexers, registers and a controller

were used. Except for the controller, which does the

management work, all other blocks are responsible for

every mathematical computation.

This algorithm computes the product of two integers

modulus a third one without performing division by M. It

yields the reduced product using a series of addition.

Figure 4: Montgomery’s modular multiplier architecture

5. IMPLEMENTATION RESULTS AND

COMPARISON

Implementation results of our three architectures,

which were implemented on a Xilinx FPGA XC4VFX12,

are shown in the following tables. Table 1 compares the

timing operation, showing the maximum workable

frequencies and minimum workable periods; Table 2

compares the device utilization by the number of used

FPGA configurable logic block slices and its

representative percentage. For each architecture three bit

lengths (32, 128 and 1024) were tested. Add-and-shift

method, Booth’s and Montgomery’s methods are

represented in the tables by A&S, Booth and MG,

respectively. In order to synthesize and simulate we used

Xilinx ISE 9.2 and Cadence NC-Sim software.

As major part of this work, timing analysis was done

comparing results of two basic modular multiplications.

Utilizing the implemented 32 bits architectures, the

response times will be measured to present its variation

(or its lack of variation). However, in cryptosystems,

operands are quite large (as 1024 bits) as they represent

blocks of text. So this comparison will be barely useful to

illustrate the response time variation.

 First, we applied operands A = 13 and B = 25 and

modulus M = 97. Then, we applied A = 111, B = 86 and

M = 113. The results are given in Table 3. Note that in

the first modular multiplication the reduction step will

subtract less times than in the second modular

multiplication.

Considering the results above, we perceived that the

Booth’s method, in spite of slower response, is better than

add-and-shift method, because of its less FPGA usage.

However, due to the variations of response times,

Montgomery’s method (and so the interleaved

multiplication and reduction method) is better than the

others for public-key encryption applications.

Table 1: Maximum frequency and minimum period

depending on the bit length.

Method Operand size Max. Freq. Min. Period

32 140MHz 7.135ns

128 62MHz 16.080ns A&S

1024 10MHz 98.811ns

32 221MHz 4.511ns

128 113MHz 8.783ns Booth

1024 20MHz 48.656ns

32 532MHz 1.878ns

128 465MHz 2.150ns MG

1024 303MHz 3.298ns

Table 2: FPGA configurable logic block slices’ usage

(out of 5472) depending on the bit length.

Method Operand size # Slices Percentage

32 260 4%

128 1068 19% A&S

1024 8190 149%

32 106 1%

128 433 7% Booth

1024 3496 63%

32 185 3%

128 654 11% MG

1024 5038 92%

Table 3: Response times of modular multiplications on

our three architectures with common clock cycles.

Method Mod. Mult. Time

13 · 25 mod 97 65ns
A&S

111 · 86 mod 113 450ns

13 · 25 mod 97 216ns
Booth

111 · 86 mod 113 702ns

13 · 25 mod 97 1174ns
MG

111 · 86 mod 113 1174ns

Is important to realize that the Montgomery’s

algorithm is relatively not good for small bit lengths, but

behaves stably for large bit lengths. In contrast, multiply-

then-reduce method behaves extremely badly for large bit

lengths: sometimes is quick and sometimes bring results

exceptionally slowly. Besides the problem of becoming a

slow calculation, this inconstancy causes the variation in

response time, that is the information used by attackers

for a timing attacks.

6. CONCLUSION AND FURTHER WORK

We presented three modular multiplication methods

that bring different implementation results. After

analyzing the results presented in the last section we

conclude that, under the side-channel attacks perspective

(timing attacks in particular), the Montgomery’s method

came across being very resistant.

As a future work we will implement a complete circuit

of RSA encryption algorithm using the Montgomery’s

algorithm described above. We are also inclined to make

improvements in our design for performance and area

optimization.

7. ACKNOWLEDGEMENTS

The authors are grateful to the Funcap’s founding

support through its post-graduating scholarship program

and also to Xilinx and Cadence for EDA tools support,

provided by their University programs.

8. REFERENCES

[1] R. L. Riviest, A. Shamir, ans L. M. Adleman. A

method for obtaining digital signatures and public-keys

cryptosystems. Communication of the ACM, 21(2):120-

126, 1978.

[2] P. Montgomery, “Modular Multiplication without

Trial Division,” Mathematics of Computation, vol. 44,

pp. 519–521, 1985.

[3] C. Lu, S. Tseng, and S. Huang, “A Secure Modular

Exponential Algorithm Resists to Power, Timing, C Safe

Error and M Safe Error Attacks”, in Proc. AINA, 2005,

pp.151-154.

[4] P. Kocher, “Timing attacks on implementations of

Diffie-Hellman, RSA, DSS and other systems”', Proc. of

CYRPTO '97, Springer LNCS vol. 1109, pp. 104-113,

1997.

[5] N. Nedjah and L. Mourelle. A review of modular

multiplication methods and respective hardware

implementations. Informatica, 30 :111–130, 2006.

[6] Brickell, E. F., A survey of hardware implementation

of RSA, In G. Brassard, ed., Advances in Cryptology,

Proceedings of CRYPTO'98, Lecture Notes in Computer

Science 435:368-370, Springer-Verlag, 1989.

[7] Koç Ç. K.; Acar T; Kalisky Jr, B.S.. – Analyzing and

Comparing Montgomery Multiplication Algorithms;

IEEE Micro, v.16 n.3, p.26-33, June 1996.

