
IMPLEMENTATION OF A BASIC MICROCONTROLLER

FOR TEACHING EMBEDDED SYSTEMS DESIGN

Maicon Carlos Pereira, Cesar Albenes Zeferino

Universidade do Vale do Itajaí – CTTMar – GSED

Rua Uruguai, 458 – C.P. 360

CEP 88302-202, Itajaí, SC, Brazil

{maicon, zeferino}@univali.br

ABSTRACT

In this paper, it is presented a basic microcontroller,

named µBIP, developed to be used in the teaching of

embedded systems design. Its architecture was specified

by using ArchC, and a synthesizable model was

implemented in VHDL and validated in FPGA.

1. INTRODUCTION

The demand for professionals able to deal with the

design of digital systems for embedded systems has

increased in the last years. Courses covering issues

related with this topic lack of basic architectures which

could easily be used to teach concepts related to the

design of processors and microcontrollers.

In this sense, a basic microcontroller architecture

named µBIP (read micro bip) was proposed and

implemented in order to be used in the teaching of

concepts on the design of microcontrollers. A first

organization was specified and a soft core was model in

VHDL. In the design flow, architectural specification was

performed by using ArchC, an Architecture Description

Language – ADL developed University of Campinas [1].

ArchC automatically generated the assembler, the linker

and a Instruction-Set Simulator. After that, µBIP was

specified and a synthesizable soft core was modeled in

VHDL and synthesized in FPGA for validation.

This paper presents µBIP architecture and

organization and issues related to its implementation.

2. µBIP ARCHITECTURE

In µBIP microcontroller, instructions and data are

16-bit wide. There is only one instruction format, shown

in Fig. 1, and three addressing modes. The instruction

format has one implicit operand, the ACC (Accumulator)

register, and one explicit operand (the operand field).

Depending on the addressing mode, this explicit operand

can be: a constant in immediate addressing mode); a

variable in direct addressing mode; or a vector index in

indirect addressing mode. The instruction set includes 29

instructions organized in nine classes (shown in Table 1).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode Operand

Fig. 1. µBIP instruction format.

Table 1. µBIP ISA.

Class Instructions

Arithmetic ADD, ADDI, SUB, SUBI

Logical AND, OR, XOR,

ANDI, ORI, XORI, NOT

Shift SLL, SRL

Load LD, LDI

Store STO

Control HLT

Branch BEQ, BNE, BGT, BGE,

BLT, BLE, JMP

Vector access STOV, LDV

Procedures CALL , RET, RETI

µBIP separated memories for instruction and data, and

addressing space is organized in a 2 Kword program

space and a 2-Kword data space. I/O is memory mapped.

At the architecture level, µBIP has five registers: PC

(Program Counter), ACC (Accumulator), STATUS, SP

(Stack Pointer), and INDR (Index Register), used in

array-based operations.

For procedure calls and interrupts, µBIP uses a stack

to save the current context, which is only the value of

PC+1. This approach is based on the one used in

Microchip’s PIC16 architecture.

As one can see, µBIP architecture was specified to be

“as simple as possible”. Since it uses a single format for

all the instructions of its small instruction set, students can

easily learn how to program it. Also, its architecture was

specified based in the goal of make easier the design of its

organization, as is shown in the following section.

2. µBIP ORGANIZATION

Fig. 2 depicts the µBIP organization. It is based on a

Harvard mono-cycle approach like the one used in the

monocycle version of MIPS [2]. It includes the

instruction and data memories, the CPU (composed by

the Control Unit and the Datapath) and the peripherals.

Fig. 2. µBIP organization.

The Control Unit fetches a instruction from the

Program Memory, decodes it and sends command signals

to the Datapath, which is responsible to process data. The

first version of µBIP includes the following peripheral

and hardware features: (a) two 16-bit I/O ports with

individual direction control for each pin; (b) a 16-bit

timer; (c) an interrupt controller; and (d) hardware

support for procedure calls.

3. µBIP DESIGN

In design of µBIP, ArchC was used in the

architectural specification phase. The tools generated

automatically by ArchC were used in the validation of the

proposed architecture. All the instructions were validated

by using unitary tests and 79% of the ISA was also

validated by simulating the execution of applications

based on the benchmarks of Dalton Project [3].

µBIP organization was described in VHDL and

synthesized in Altera FPGA EPF10K70RC240-4. Silicon

costs depends on the target application.

Table 2 summarizes the ISA coverage of some of the

Dalton Project applications, their costs and maximum

operation frequency.

Table 2. Test coverage and silicon results of Dalton

Project applications.

Application Program size

(instructions)

ISA test

coverage

#Logic

Cells

fclk
(MHz)

cast 9 20% 492 7.44

fib 50 48% 992 6.95

gcd 22 34% 805 6.75

sort 97 44% 1050 6.58

sqroot 59 44% 996 6.51

Fig. 3 illustrates a simulation of execution of cast

application, which takes a 16-bit word and separates it

into two 8-bit words. Firstly, the two I/O ports are

configured as output ports (1 and 2). After, a 16 bit word,

0x1234, is built in ACC register (3). In 4, the less

significant byte (0x34) is written into port0_data. ACC

register is shifted right (5) and the most significant byte is

written into port1_data (6).

Fig. 3. Simulation of cast application.

Validation was also performed by running application

on Altera UP-2 developing board.

4. CONCLUSIONS

µBIP was developed as a final work of a Computer

Science student. Its simplicity and the use of CAD tools

make ease its implementation in about 5 months. Futures

works on µBIP includes the development of a compiler

and of a visual IDE.

5. REFERENCES

[1] The ArchC Team. The ArchC architecture description

language v2.0. Campinas: The ArchC Team, 2007.

[2] Patterson, D. A., Hennessy, J. L. Computer Organization

and Design. San Francisco: Morgan Kaufmann, 1998.

[3] The Dalton Project Team. The UCR Dalton Project.

University of California – Riverside, 2001.

