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ABSTRACT

Embedded  systems  used  to  process  high  definition 
video  sequences  require  storing  large  amounts  of  data 
while  processing.  These  systems  frequently  employ 
dedicated hardware architectures which are more efficient 
to process video signals because of the data parallelism. 
Hardware modules perform data processing sharing one 
main memory used to store several reference frames. This 
shared memory has as main characteristics high capacity 
to store data and high bandwidth. In this paper we propose 
memory  hierarchy  architecture  to  integrate  a  DDR 
SDRAM  memory  controller  in  a  H.264/AVC  video 
decoder hardware implementation. The memory hierarchy 
contains  an  arbiter  used  to  control  data  access  priority 
between the hardware modules. 

1. INTRODUCTION

In  high  performance  video  processing  systems,  an 
efficient  memory  hierarchy  design  is  the  key  point  to 
reach real time capacity while the decoding process of full 
high definition video sequences is executed. The memory 
hierarchy  can be  understood  as  the  organization  of  the 
data storage elements and the way that they are accessed. 
In embedded systems, memory capacity is a very limited 
hardware resource. Generally, it is composed by local and 
external memories. External memories have more capacity 
to store data at low cost because they are manufactured in 
large scale. In this context, double data rate synchronous 
DRAM  memories  (DDR  SDRAM)  have  large  use  in 
embedded systems because their low cost and high data 
storage capacity.

H.264/AVC [1] is the latest video coding standard of 
the ITU-T Video Coding Experts Group (VCEG) and the 
ISO/IEC Moving  Picture  Experts  Group  (MPEG).  The 
H.264 video standard is defined in three different profiles: 
baseline,  main and  high.  This  work  is  focused  on  the 
hardware implementation of the main profile decoder.

Video processing systems computational complexity is 
formed by two major  components:  time complexity and 
space  (or  storage)  complexity  [2].  Space complexity  is 
measured by the amount of memory  required to hold all 
the reference frames and other information while video is 
being  processed.  Time  complexity  is  measured  by  the 
approximate number of operations required to execute an 
algorithm. When considering  an architecture design,  the 
time  complexity  of  an  algorithm's  execution  is  directly 
dependent of the total memory bandwidth available. Thus, 
efficient  processing  architectures  are  that  have  best 
balance between those two complexities, performing less 
memory accesses while processing data. The design of an 

efficient  video  decoder  must  consider  the  number  of 
accesses to the reference memory  and the way as these 
accesses are performed. 

In the H.264/AVC video decoder, a predefined num-
ber of decoded video frames are stored into a reference 
memory and are used in the decoder process. The major 
amount of data storage complexity in the video decoder is 
required to store the reference frames and is limited on 
about 12.5 mega-bytes of data. The reference memory is 
accessed by different processing units (PU), each one of 
them interfacing  data in  different  ways  and  in different 
levels of dependency. In digital video processing systems, 
the design of a memory hierarchy is necessary to store the 
reference frames and control the read and write requests 
from different PUs.

This  paper  presents  an  analysis  of  data  access 
behaviors  from  different  PUs  of  a  hardware  imple-
mentation  of  the  H.264/AVC  video  decoder.  A  multi-
channel  DDR  SDRAM  memory  controller  with  access 
requests  arbiter  is  designed  and  simulated.  The  multi-
channel controller controls data access requests optimizing 
the reference memory use by the H.264/AVC decoder. In 
this first implementation it is used a round-robin arbiter 
scheme with fixed time-slot  (time-division multiplexing) 
to allow PUs to access the memory channel. 

This paper is organized as follows: section 2 presents 
the hardware architecture of the H.264 decoder; section 3 
presents the multichannel DDR SDRAM controller archi-
tecture proposed;  the simulation results  are presented in 
section 4 and the conclusions are discussed in section 5.

2. H.264 DECODER ARCHITECTURE

The  video  decoder  hardware  architecture  used  as 
reference in this work is presented by Agostini in [3]. The 
proposed  architecture  is  organized  in  five  main  PUs: 
motion  compensation  (MC);  intra-frame  compensation  
(intra);  filter;  inverse  transform  (IT) and;  inverse  
quantization (IQ).  The PUs are implemented in VHDL 
language  to  be  prototyped  and  validated  over  a  FPGA 
platform. The entropy decoder and control processes are 
performed  by  an  embedded  processor.  Also,  this 
processor  sends  the  video  coded  input  bitstream to  the 
decoder and controls the video output.  The MC process 
and  the  reference  frames  memory  are  not  yet  fully 
integrated with the decoder. 

The  temporal  differences  between  frames  are 
processed by the MC to generate one actual frame. This 
process  is  the  most  computationally  demanding  in  the 
video  decoder.  Also,  MC is  the  decoding  process  that 
generates more stored data requests. The reference frames 
used  by  the  MC  process  are  previously  decoded  and 



stored  in  an  shared  memory  (or  main  memory).  These 
frames are produced after full frame decoding, which are 
the output of a filter block in H.264. Finally, video output 
module  needs  to  fetch  decoded  frames  in  the  original 
order, even when frames are decoded in an arbitrary order. 
This  produces  the  need  to  store  these  frames  at  the 
external memory. The video decoding process at level 4.0 
uses  four  high  definition  (HD)  4:2:0  (1920x1080) 
reference pictures, representing an amount of 12.5 mega-
bytes of stored data.

The first decoding step of  the coded video bitstream 
input is the entropy decoder.  This process generates the 
control  elements for  MC and Intra prediction processes. 
Also, the entropy decoding generates the image residual 
information that is added to the predicted frames, either 
motion  compensated  or  intra-frame  predicted.  The 
generated images are filtered before the video output and 
before they are stored in the main memory. 

Fig.1 illustrates the video decoding process organized 
as  the  data  flow  through  the  PUs  implemented.  Each 
hardware module in the decoder contains  local memory 
resources used to process local data information. Due to 
the  different  data  access  behaviors  from  the  PUs  that 
interfacing  with  the  main  memory,  The  video  output 
generator  exhibits  a  line  of  pixels  of  the  entire  image, 
which in the case of full HD video, is composed by 120 
macroblocks (MBs) in wide. Therefore, a line of MBs is 
read  from the  main  memory  and  stored  into  the  video 
output buffer. The decoder output (i.e. filter) generate a 
sequence of MBs and each one is stored in a buffer of 2 
MBs  size  to  be  send  to  the  main  memory.  The  MC 
contains  a  local  cache  structure  that  is  responsible  to 
request reference pixels stored into the main memory to 
perform  the  reconstruction  process.  Those  buffers  are 
necessary  to  optimize  the  DDR  SDRAM  available 
bandwidth,  storing  temporary  data  on  buffers  to  allow 
sharing the memory channel between PUs.
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Fig 1. H.264 video decoding process flow and the 
processing units.

One  shared  memory  is  necessary  to  store  several 
reference frames used by the MC process. In H.264/AVC, 
slices  are  formed  by  motion  compensated  blocks  from 
past and future (in temporal order) frames. The past and 
future frames are not fixed just to the immediate frames, as 
in  early  standards. Each  macroblock  in  a  bi-predictive 
slice (B slice) can be predicted from one or two reference 
frames, using past and future frames. The reference frames 
are organized in two lists: 0 and 1. 

This architecture requires a frame buffer to hold output 
images  generated  by  the filter.  If  a frame buffer  is  not 
available  or,  if  it  is  necessary  to  share  the  storage 

resources, the main memory has to be accessed also by the 
video  controller.  The  main  memory  controller  has  to 
balance  and  optimize  the  data  accesses  sequences 
requested  by  different  modules.  This  is  necessary  to 
reduce  the waiting  time of  hardware  modules  to  access 
main  memory  while  processing,  stalling  the  video 
decoder.

 Therefore, a multichannel memory controller module 
is required to control the data accesses sequences.

 As the video decoding process has an unpredictable 
behavior, the MC module can access the main memory in 
different  rates.  Also,  the  three  hardware  modules  are 
connected  to  the  memory  controller  sharing  the  same 
command  and  address  bus,  being  necessary  to  have  an 
arbiter controlling the data requests. 

In the next section will be explained the external DDR 
SDRAM  memory  controller  and  also  the  multichannel 
memory architecture, as a part of the memory hierarchy. 

3. MULTICHANNEL MEMORY CONTROLLER

This section explains the main characteristics of DDR 
SDRAM  memory  [4]  and  a  multichannel  controller 
architecture is proposed. 

3.1. Double Data Rate SDRAM

Double data rate memories contain three buses: a data 
bus, an address and a command bus. The command bus is 
formed by the signals column-address strobe (CAS), row-
address  strobe  (RAS),  write  enable  (WE),  clock  enable 
(CKE)  and  chip-select  (CS).  The  data  bus  contains  the 
data signals (DQ), data mask (DM) and data strobe signals 
(DQS). Address bus is formed by address (ADDR) and 
bank address (BA) signals. These memories operate with 
differential clocks CK and CKn, which provides source-
synchronous  data  capture  at  twice  the  system  clock 
frequency. Data is registered either in the rising edge of 
CK and CKn. The memory is command activated starting 
a  new  operation  after  receive  a  command  from  the 
controller.

Data words are stored in the DDR memory organized 
in banks and pages and each memory page contains  210 

data words. Fig. 2 illustrates the timing diagram for a RD 
operation in DDR memory. Data is transferred in bursts, 
sending or receiving 2, 4 or 8 data words in each memory 
access. 
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Fig. 2: Timing diagram of reading data.

Data memory contents are accessed by page activation, 
using the row-address strobe  (RAS) command (step #1). 
After this, the memory controller sets the column address, 
called as a column-address strobe  (CAS) command (step 
#2). In the case of a RD operation, data is available after 



the  CAS  Latency  (CL)  which  can be  2,  2.5  or  3  clock 
cycles (step #3).  The data words  D0:D3 are transmitted 
edge aligned with the strobe  signal  DQS after the CAS 
latency.  DQS  is  a  bidirectional  strobe  signal  used  to 
capture data DQ. To change to another memory page, is 
necessary to deactivate the current page. This is done by 
using the pre-charge (PRE) command and takes about 10 
cycles after the last data access operation.

When  interfacing  with  DDR  SDRAM  memories, 
latency becomes a problem if each consecutive data access 
is  performed  in  different  memory  rows.  In  this  case, 
changing  memory  row requires  the execution  of  Active 
and Pre-Charge commands. Frequent row changes reduce 
the  effective  data  bandwidth,  degrading  the  memory 
interface speed. 

3.2. Multichannel Memory Controller

The  main  purpose  of  the  multichannel  memory 
controller  is  to  guarantee  Quality  of  Service  (QoS) 
between  the  PUs  accessing  the  external  memory.  This 
means  to  generate  equilibrated  data  bandwidth  and  fast 
access  permissions  to  read  or  write  shared  data  in  the 
decoding processes. Its internal architecture is illustrated 
in the Fig.3. It is designed with three access interfaces with 
respective  command,  address,  data  and  control  signals. 
The multichannel interface uses a simple protocol where 
an  acknowledge  (ACK)  signal  gives  permission  to  the 
module after the received access request. There are three 
main hardware modules: an external memory  controller, 
an arbiter and a data-path. The external memory controller 
was implemented as an intellectual property (IP) module, 
presented before in [5].

The  arbiter  controls  the  access  of  each  hardware 
module to the time-division multiplexed memory channel. 
An  internal  table  stores  the  maximum  occupation  in 
number of clock cycles of the memory channel by each 
hardware module.
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Fig. 3: Multichannel memory architecture.

Video  output  and  filter  modules  access  the  main 
memory  at  a  constant  rate,  in  the  exhibition  rate.  For 
1080p 4:2:0 video sequences, filter send data to be stored 
in the main memory at an effective rate of 245,760 macro-
blocks per second, i.e. 94.3 mega-byte per second. Data is 
send in bursts while the macro-blocks are decoded, and is 
stored in the memory. This macro-block rate is the same 
for the video output. Either the video output and the filter 
requires local memory resources to store MBs.

The  MC  architecture  to  be  implemented  with  the 
controller proposed in this paper is presented by Azevedo 
in  [6].  As  the  referred  author  mentions,  the  memory 
throughput  is  mainly  needed  when  the  main  profile  is 

considered (because the bi-prediction support) and as well 
high  resolution  videos  (as  HDTV).  The  total  memory 
throughput  of  956.448  mega-bytes per  second is neces-
sary  for  decoding  HDTV  video  sequences.  In  order  to 
optimize memory accesses, the author implements a three 
dimensional data cache architecture and techniques of read 
only the necessary samples and interleaved samples stored 
at the main memory.  The use of  a cache can reduce in 
more than 62% of external memory accesses. Using this 
approach, the total bandwidth for MC accessing external is 
about 382.57 mega-bytes per second.

Tab.1  summarizes  the  main  memory  access  rates 
interfaces estimated for decoding 1080p 4:2:0 H.264/AVC 
video sequences.

Tab 1. Data access behaviors for 1080p 4:2:0 video.

Data Direction Data Behavior Access Rate 
(Mbyte/s)

MC Read Line of pixels 382.57

Video Out Read macro-block  94.3

Filter Write macro-block  94.3

The total bandwidth required to interface with the main 
memory  is  about  571.17  mega-bytes  per  second.  For  a 
DDR SDRAM memory,  running  at a clock rate of  100 
MHz and data width  of  64  bits,  the peak bandwidth  is 
1,600  mega-bytes  per  second.  This memory  interface is 
sufficient  to  implement  the  hardware  video  decoder 
architecture.

Data access latency is not a problem when more than 
one read or write commands are requested to the memory. 
The read and write commands  can be concatenated and 
data can be accessed continuously. 

The  memory  controller  can  schedule  the  received 
commands from the hardware modules to better organize 
memory data accesses. This simple operation can increase 
the effective number of data access rates. Local memory 
caches, as the one proposed in [6] complete the memory 
communication optimization task.

4. FUNCTIONAL SIMULATION AND ANALYSIS

Data  pattern  generators  were  used  to  simulate  the 
access behavior for the video decoder hardware modules. 
The  multichannel  controller  arbiter  was  implemented 
performing  a  Round-Robin  scheduling  scheme,  where 
each  data  channel  have  a  fixed  time-slot  to  access  the 
shared  memory.  Different  time-slot  sizes  were  used  to 
made a performance  comparison  between the two main 
factors  of  QoS:  the  available  bandwidth  and;  the  fast 
access  permission  to  use  the  memory  channel.  In  this 
implementation  of  the  video  decoder,  each  PU  that 
interfaces with the main memory contains a local memory 
used to store data while processing. 

Tab. 2 summarizes the main information of each PU 
sharing  the  main  memory  regarding  the  required  PUs 
bandwidth. Also, each PU are classified as bandwidth or 
latency  dependent.  In  the  case  of  a  latency  dependent 
process,  the  PU  require  to  use  the  memory  channel 
immediately. 



Tab 2. processing units and the memory dependence.
MC Video Out Filter

Sensitivity latency bandwidth latency

Mean channel request interval 
(clock cycles)

385 48 828 407

Maximum consecutive Access 
(clock cycles)

61 2 958 40

 
The  maximum  consecutive  access  in  clock  cycles 

represents  the total clock cycles used from the memory 
bandwidth for each data access, including the extra cycles 
for activate and deactivate the memory pages.

The  simulation  setup  was  done  using  a  previously 
recorded data access pattern obtained with MC simulation. 
The data pattern generators  was used with the designed 
multichannel  memory  controller  with  a  simple  round-
robin  arbitration  scheme.  Tab.  3  shows  the  simulation 
results  for  different  time-slot  (TS)  controlled  by  the 
arbiter.

Tab. 3. Simulation results and accesses behaviors for 
PUs (in clock cycles).

MC Video Out Filter

Access Wait Access Wait Access Wait

TS32 41 32 46 102 23 38

TS64 42 50 69 154 23 54

TS128 42 99 116 242 23 25

TS256 42 118 170 283 23 135

TS512 42 129 274 229 23 147

As the simulation  results  shown,  the increase in  the 
time interval of using the memory channel, bigger is the 
wait time for other PUs. Also, it can be seen that processes 
with bandwidth sensitivity increase the relation between 
access and wait by increasing the time interval.

The  memory  controller  is  able  to  share  the  DDR 
SDRAM memory  between PUs,  but  some  penalties  are 
detected when using this kind of arbitration. The processes 
that  are  latency  sensitive  may  not  access  the  memory 
channel  as  faster  they  need  because  the  bandwidth 
sensitive process. This can cause delays in the decoding 
process and degradation of the real-time capabilities of the 
video decoder.

5. CONCLUSIONS

In  video  decoder  architectures,  an  efficient  memory 
hierarchy  is  necessary  to  allow real-time decoding.  The 
high  volume  of  information  requires  a  large  external 
memory to store several reference frames. Local memory 
reduces  needed  external  memory  bandwidth  allowing 
dedicated hardware modules to execute local processing 
tasks.  Nevertheless,  memory  channel  multiplexing  is 
needed between different hardware modules.

This work presented an external multichannel memory 
controller  which  permits  to  define  different  memory 
bandwidth for each processing module. The controller has 
reuse  facilities  as  it  maintains  the  characteristics  of  the 
single channel controller presented in [5]. 

Data  pattern  generators  can  be  used  to  simulate  the 
data access behavior of the real application, if the modules 
are modeled correctly. As the video output have constant 
bit-rates, the estimable throughput can be concerned to the 
motion  compensation  process.  The  overall  system 
integrating the multichannel controller and the data pattern 
generators  can  be  implemented  in  a  hardware 
development  platform to validate the memory  hierarchy 
architecture using a real external memory. The controller 
was  successfully  tested  considering  the  communication 
needs of the main modules of an H.264 decoder.

Future works include on board testing of the controller 
and  the  study  of  different  memory  channel  arbitration 
schemes.
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