
REDUCING SOC DESIGN EFFORT BY ABSTRACTING COMMUNICATION DETAILS
USING A ESL CENTRIC SERVICE BASED UML PROFILE

Millena Gomes, Cristiano Araújo, Adriano Sarmento, Ciro Ceissler, Josiane Bezerra, Denys

Farias

Informatics Center (CIn) – Federal University of Pernambuco

ABSTRACT

This paper presents UML-ESL, an UML 2.0 profile
that supports Electronic System Level for SoC design.
The proposed UML profile supports hardware/software
system modeling and partitioning at an abstraction level
higher than current UML 2.0 based approaches. The
proposed approach reduces the system modeling effort by
abstracting its communication details. Designers are
relieved from the tedious and error prone tasks of
modeling interface, ports, channels and protocols. Using
the proposed profile, the designer models communication
as services and focus on the modeling of high level
service features including synchronicity and parallelism,
and also service performance constraints. The paper also
highlights how the communication modeled using this
profile can lead to a SoC communication infrastructure.
The proposed profile was validated with the modeling of
an image segmentation hardware/software system and the
generation of a virtual platform that implements that
system modeled in UML-ESL.

1. INTRODUCTION

Modern complex embedded systems include the use

of SoCs (System-on-chip). These are highly integrated
circuits composed of heterogeneous components like
processors, memories, interconnection structures, and
peripherals. The use of SoCs implies that parts of the
functionality of the circuit are implemented as software
applications running on the processors and the rest as
hardware components. Communication between these
parts can be synchronous or asynchronous and occur
sequentially or in parallel. In order to implement
hardware/software communication the designer must
develop device drivers, and hardware elements, which
consist of interrupt controllers, device controllers and
hardware interfaces between those components and the
interconnection structure.

The complexity of such systems resulted in the
research of high level specification and modeling
mechanisms. In particular, the use of higher abstraction
levels for faster modeling and better simulation
performance. Despite these approaches are commonly
known as Electronic System Level [1], they differ in the
language and abstraction levels supported. For instance,
in the last years, several languages have been proposed as
a solution for high abstraction levels implementation.
Initial approaches have used programming languages, in
particular C/C++, for the modeling of systems. Later
hardware support libraries on top of these programming
languages like SystemC were largely accepted and used

to model and implement the modern systems, since it
allows the hardware and software implementation. In
recent years, UML 2.0 has gained space as an alternative
to describe hardware/software systems due to its language
independence and capacity to define domain specific
profiles [3]. One example of the use of UML 2.0 for SoC
design is the UML profile for SoC [2], which is tailored
for the modeling of hardware.

Even using UML the abstraction level of current
approaches is not high enough to ease design effort. Most
of the proposed UML 2.0 profiles simply allow the
modeling of hardware in UML. Details of the
architecture, in particular communication, need to be
provided. Designers still have to specify ports, interfaces,
channels and protocols in order to model communication
similar to its implementation, thus reducing the effort of
model implementation. These are time consuming and
error prone activities. So, the problem is how to define a
mechanism for modeling hardware/software systems for
implementation as SoCs, that abstracts communication
details, provides means to the designer for high level
configuration of the communication (ex: synchronicity
and parallelism) and finally provides a path for the
implementation of the system.

This paper presents a UML 2.0 profile, the UML-
ESL, which supports hardware/software systems
modeling by abstracting communication details. Its
contribution is the definition of a UML profile that
supports the hardware/software partitioning of the
system, the modeling of communication at a high
abstraction level using services calls, and the services
classification (see Table 1). The paper also highlights
how the proposed profile can be used for the generation
of the communication infra-structure.

The rest of this paper is structured as follows. Related
work is presented in section 2. The system level modeling
is presented in section 3. The UML-ESL profile to enable
system level modeling is described in detail in section 4.
The results are discussed in section 5. Finally, some
conclusions are given in section 6.

2. RELATED WORK

Aiming the improvement of UML model expression

power for SoC design, some UML profiles and tools were
defined. Mueller [4] proposed an UML 2.0 profile for
SystemC based on the UML profile for SoC and a tool
that generates SystemC code from UML diagrams.
Muller also demonstrates how to model hardware and
software together in a unique UML base environment.
This profile supports ISS (Instruction Set Simulator)

encapsulation in UML diagrams and allows designers to
model systems composed by elements implemented in
C/C++ and SystemC. However, in Muller’s approach
UML designs are merely representations of SystemC
models. Designers must still model communication in
detail, including ports, interfaces and protocols

Riccobene [5] proposed a tool for hardware and
software co-design using UML and SystemC.
Riccobene`s tool employs an UML platform-independent
model (PIM), that can be mapped onto a platform-
specific model (PSM), which contains design and
implementation details. The tool supports forward/reverse
engineering to/from C++ and SystemC code generation.
Using UML class diagrams designers are able to model
the system as a set of modules. However, the
communication must still be modeled by the use of ports,
channels and interfaces. As before, communication
details are still not abstracted in a level high enough.

As it can be seen, current approaches fail to provide a
mechanism for modeling hardware/software systems that
abstracts communication details and is also suitable for
SoC design implementation.

3. SYSTEM LEVEL MODELING

This paper proposes a high abstraction level
mechanism for system modeling, where the system is
modeled in the architectural domain, in which it is
partitioned as computing elements that communicate
through services. Each element is classified after the
partitioning as hardware or software. One example of
system modeling is shown in figure 1. It is composed of
two modules Skin (software module), and Mahalanobis
(hardware module), the later provides the
mahalanobisDistance() service.

Services implement modules functionalities. They are
provided to other modules in the system. Services are
composed by input data, and a result that is made
available for its caller after its execution. In this context a
transaction is defined as the execution of a service, from
its call until it returns a value. One example is shown in
figure 2 where service 1 is called by both Module A and
Module C.

Transactions are classified according to the categories
proposed by Goniat [6] and summarized in Table 1. The
first category is type and it can be classified as
synchronous or asynchronous. In a synchronous
transaction both the caller module and the service
instance are blocked until the result is received by the
caller module. That means that the service instance is not
available for any other call. On the other hand, in an
asynchronous transaction, services may return
service_non_available responses that resume caller
modules execution.

Table 1 Communication classification summary table

Characteristic Classification
Type Synchronous Asynchronous
Mode Sequential Parallel

The communication mode corresponds to the way or
sequence that services are executed, and are classified as

sequential or parallel. Figures 2 and 3 show examples of
parallel and sequential communication respectively.

High level timing constraints may be applied to a
service in the communication modeling. In this work the
following constraints can be applied: the minimum,
average or maximum execution time of each service.

4. UML PROFILE FOR ESL DESIGNS

This section presents UML-ESL, a UML 2.0 profile
for ESL, which enables hardware/software systems
modeling at system modeling abstraction level presented
previous sections. Using UML-ESL the designer reduces
effort to model hardware/software systems by abstracting
communication details. It provides mechanisms for
easing the specification of system partitioning in
hardware and software, and the modeling of services
including the specification of services constraints.

The system modeled in UML-ESL, contains a smaller
number of classes compared with the same system
modeled in the UML profile for SoC, since it abstracts
the communication details. Partitioning information is
presented in this model by the classification of the
modules in sw_module and hw_module presented in those
modules stereotypes.

Figure 1 Class Diagram Example at System Level Modeling

The image segmentation of the Vmote design will be
used to explain how to model systems architectures
composed by hardware and software in a unique UML
based environment. The image segmentation system
example is composed by two modules, Skin, which is in
charge of the acquisition of an image and its conversion
to a pixel matrix, and Mahalanobis, which is responsible
for the execution of the mahalanobis distance
segmentation algorithm. The following sections will
present how to model the system architecture,
communication and design constraints using the UML-
ESL profile.
4.1 Architectural Modeling

System architecture is modeled using class diagrams,
which are responsible for the hierarchical modules
representation and their structures, represented by its
attributes and services. In the class diagram the designer
partitions the system in hardware and software parts. In
order to support hardware/software partitioning, UML-
ESL provides stereotypes hw_module, used to identify
modules that have to be implemented as hardware

components, and sw_module, used to identify modules
that have to be implemented as software applications.
Figure 1 presents an example of the partitioning of part of
the VMote system. The Skin class is defined as a software
module while the Mahalanobis class is defined as a
hardware module.

Each module is formed by attributes and operations,
represented by the functions implemented by the module.
The configuration parameters are identified by the
parameters in the constructor. These can be configured by
the designer. The modules of the example showed in do
not have any parameter. In the UML-ESL profile,
services are identified as the operations that are visible to
external modules, i.e. public functions. Private functions
are not considered services in this approach, they are
simply internal operations.

Class diagrams are also employed to specify
interactions between modules. The “use” arrow
connecting two modules indicates that one module uses
services provided by the other.

4.1.1. Architectural Implementation
The hardware and software modules of the system can

be mapped into a base platform composed by
processor(s), bus and memory. The hardware and
software modules can be implemented as hardware
elements and applications running in a processor,
respectively. The communication among them is
implemented by the bus and extra components integrated
into the platform, as wrappers and drivers to allow the
communication among the platform elements.

4.2 Communication Modeling

Communication among modules and transaction
parameters are modeled in sequence diagrams. This
diagram is used to represent interactions among modules,
through messages that call their services. Services calls,
including their response, will be called transactions in this
paper.

In the sequence diagram the designer is able to
classify transactions according to the criteria defined in
Table 1. The type, synchronous or asynchronous, is
selected by the type of the arrow used to identify the
service call. Figure 2 shows the difference between the
representation of synchronous messages, represented by
filled arrowheads (service 1), and asynchronous ones,
represented by stick arrowheads (service 2). In Figure 3
the mahalanobisDistance() service is an example of
synchronous service.

 Transactions execution sequence is modeled in the
sequence diagram by the order in which they appear
considering the vertical axis, which is the time
representation. In the sequential diagram the designer can
define the transaction mode to be sequential or parallel.
The communication mode used is represented by the
frame namebox presented in the right top of the frame.
The parallel combination fragment is drawn using a
frame with the text "par" in the frame's namebox, as
showed in figure 2. Each operand in the frame represents
a thread of execution performed in parallel.

Figure 2 Parallel communication representation example
The sequential combination fragment is represented

similar to parallel communication by using the text “seq”
in the frame's namebox, as showed in Figure 3. As it can
be seen, the transaction between the Skin and
Mahalanobis modules is made by the
mahalanobisDistance service. This service is executed
sequentially to the image matrix calculation (calcMatrix
service). Notice that the use of "seq" frames is optional,
services sequential execution may be modeled just by
inserting service calls without any other extra
information.

4.3 Communication Constraints

Sequence diagrams are also used to specify
communication constraints. The user is able to define
maximum, minimum or average time for each service.
Constraints are represented in the diagrams as comments
associated to the transactions. As showed in Figure 3 the
comment indicates a maximum transaction time
constraint of 1ms for the mahalanobisDistance service
from the Mahalanobis hardware module. Constraints are
identified by reserved words defined by the profile:
maximum_time, minimum_time, average_time, and
data_size.

4.3.1. Communication Implementation

Service transactions and constraints can be converted
to the communication architecture shown in figure 4.
Transactions are composed of a request and a response
packet. The request packet is composed by control
information (identification of the service that will be
executed and the data size) and data. The response packet
is composed by the data generated by the service and a
status. On the software side transactions are implemented
as device drivers. On the hardware side transactions
protocols are implemented by the device controller that
interacts with the device drivers. The device controller
manages the requests and responses to the appropriate
service instance. It is responsible for: (1) converting bus
data into the data accepted by the hardware, (2)
implementing the communication infra-structure to break
or group the data in order to send it to the hardware and
(3) to reorganize the data into a format accepted by the

rest of the system. The device controller, as presented in
figure 4, is directly connected to the hardware element
and to the bus through a wrapper, the bus-controller
interface, which converts the bus protocol to the
controller supported protocol.

The communication elements are implemented as
parameterized templates in a communication library.
Specific instances for each SoC platform are generated
from these templates based on the UML-ESL
specification of the system.

Asynchronous transactions, as an example, are
implemented by the controller using internal buffers to
store received requests as well as extra information added
to the request packet to identify each one. Synchronous
transactions are implemented to re-pass requests to the
device and adjust the type of the data, when it is
necessary. For parallel transactions, the service provided
by the hardware element can also be duplicated to allow
parallelism. Sequential transactions allow only one access
at a time to the device respecting the implementation of
the communication type (synchronous or asynchronous).

5. RESULTS

The image segmentation system, composed by two
main modules, Skin and Mahalanobis, was modeled at
system level using UML-ESL. The system model was
composed by a class diagram (Figure 2), where two
modules were identified, and a sequence diagram (Figure
3). There were three synchronous service calls. The
mahalanobisDistance() transactions is between a
software and hardware module. This model lead to the
generation of one device driver, one device controller and
one bus interface. These components were instantiated
from templates in a library following the characteristics
presented in section 4.3.1.

Figure 3 VMote Segmentation Sequence Diagram

The modeled system was synthesized into a virtual
platform as presented in the Figure 4, using some
previously platform implemented elements (mips
processor, simple bus and memory).

Results show the feasibility of modeling SoCs with
the proposed UML profile. UML-ESL abstracts
communication details, thus reducing designers’ efforts,
and is still capable of capturing essential systems’
characteristics leading to their synthesis.

Figure 4 Image Segmentation Application final platform

6. CONCLUSIONS

In this paper, it was proposed an ESL modeling
strategy at a high abstraction level. This paper has
presented the definition of a UML profile for ESL
System Level Modeling. The proposed profile decreases
the system design effort by abstracting communication
details. It has been shown, from a example, that a path
from this high level model to a SoC virtual platform is
feasible. As future work is the refinement of a synthesis
flow that automates the generation of the communication
infrastructure from UML-ESL specifications.

7. REFERENCES

[1] Martin, G., Bailey, B., Piziali, A. 2007. ESL Design and
Verification: A Prescription for Electronic System Level
Methodology. San Francisco,USA: Morgan Kaufmann, 2007

[2] UML Profile for Soc, OMG,
http://www.omg.org/technology/documents/formal/profile_soc.
htm, last access 03/11/2008.

[3] Lavagno, L. 2006. “UML: A Next-Generation Language
For SoC Design”. Electronic Design, May 2006. Available
at:http://electronicdesign.com/Articles/Index.cfm?AD=1&Articl
eID=12552.

[4] Mueller, W. et all. UML for ESL design: basic principles,
tools, and applications. Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design. San Jose,
California, 2006.

[5] Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S. “A
Modeldriven Design Environment for Embedded Systems”.

[6] Gogniat, G., Auguin, M., Bianco, L., Pegatoquet, A. 1998.
“Communication synthesis and HW/SW integration for
Embedded System Design”, in Proc. Of International
Conference on Hardware Software Co-design. Seattle,
Washington.

