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ABSTRACT 
 

This paper presents UML-ESL, an UML 2.0 profile 
that supports Electronic System Level for SoC design. 
The proposed UML profile supports hardware/software 
system modeling and partitioning at an abstraction level 
higher than current UML 2.0 based approaches. The 
proposed approach reduces the system modeling effort by 
abstracting its communication details. Designers are 
relieved from the tedious and error prone tasks of 
modeling interface, ports, channels and protocols. Using 
the proposed profile, the designer models communication 
as services and focus on the modeling of high level 
service features including synchronicity and parallelism, 
and also service performance constraints. The paper also 
highlights how the communication modeled using this 
profile can lead to a SoC communication infrastructure. 
The proposed profile was validated with the modeling of 
an image segmentation hardware/software system and the 
generation of a virtual platform that implements that 
system modeled in UML-ESL. 

 
1. INTRODUCTION 

 
Modern complex embedded systems include the use 

of SoCs (System-on-chip). These are highly integrated 
circuits composed of heterogeneous components like 
processors, memories, interconnection structures, and 
peripherals. The use of SoCs implies that parts of the 
functionality of the circuit are implemented as software 
applications running on the processors and the rest as 
hardware components. Communication between these 
parts can be synchronous or asynchronous and occur 
sequentially or in parallel. In order to implement 
hardware/software communication the designer must 
develop device drivers, and hardware elements, which 
consist of interrupt controllers, device controllers and 
hardware interfaces between those components and the 
interconnection structure. 

The complexity of such systems resulted in the 
research of high level specification and modeling 
mechanisms. In particular, the use of higher abstraction 
levels for faster modeling and better simulation 
performance. Despite these approaches are commonly 
known as Electronic System Level [1], they differ in the 
language and abstraction levels supported. For instance, 
in the last years, several languages have been proposed as 
a solution for high abstraction levels implementation. 
Initial approaches have used programming languages, in 
particular C/C++, for the modeling of systems. Later 
hardware support libraries on top of these programming 
languages like SystemC were largely accepted and used 

to model and implement the modern systems, since it 
allows the hardware and software implementation. In 
recent years, UML 2.0 has gained space as an alternative 
to describe hardware/software systems due to its language 
independence and capacity to define domain specific 
profiles [3]. One example of the use of UML 2.0 for SoC 
design is the UML profile for SoC [2], which is tailored 
for the modeling of hardware. 

Even using UML the abstraction level of current 
approaches is not high enough to ease design effort. Most 
of the proposed UML 2.0 profiles simply allow the 
modeling of hardware in UML. Details of the 
architecture, in particular communication, need to be 
provided. Designers still have to specify ports, interfaces, 
channels and protocols in order to model communication 
similar to its implementation, thus reducing the effort of 
model implementation. These are time consuming and 
error prone activities. So, the problem is how to define a 
mechanism for modeling hardware/software systems for 
implementation as SoCs, that abstracts communication 
details, provides means to the designer for high level 
configuration of the communication (ex: synchronicity 
and parallelism) and finally provides a path for the 
implementation of the system.  

This paper presents a UML 2.0 profile, the UML-
ESL, which supports hardware/software systems 
modeling by abstracting communication details. Its 
contribution is the definition of a UML profile that 
supports the hardware/software partitioning of the 
system, the modeling of communication at a high 
abstraction level using services calls, and the services 
classification (see Table 1). The paper also highlights 
how the proposed profile can be used for the generation 
of the communication infra-structure. 

The rest of this paper is structured as follows. Related 
work is presented in section 2. The system level modeling 
is presented in section 3. The UML-ESL profile to enable 
system level modeling is described in detail in section 4. 
The results are discussed in section 5. Finally, some 
conclusions are given in section 6. 

 
2. RELATED WORK 

 
Aiming the improvement of UML model expression 

power for SoC design, some UML profiles and tools were 
defined. Mueller [4] proposed an UML 2.0 profile for 
SystemC based on the UML profile for SoC and a tool 
that generates SystemC code from UML diagrams. 
Muller also demonstrates how to model hardware and 
software together in a unique UML base environment. 
This profile supports ISS (Instruction Set Simulator) 



encapsulation in UML diagrams and allows designers to 
model systems composed by elements implemented in 
C/C++ and SystemC.  However, in Muller’s approach 
UML designs are merely representations of SystemC 
models.  Designers  must still model communication in 
detail, including ports, interfaces and protocols 

Riccobene [5] proposed a tool for hardware and 
software co-design using UML and SystemC. 
Riccobene`s tool employs an UML platform-independent 
model (PIM), that can be mapped onto a platform-
specific model (PSM), which contains design and 
implementation details. The tool supports forward/reverse 
engineering to/from C++ and SystemC code generation. 
Using UML class diagrams designers are able to model 
the system as a set of modules. However, the 
communication must still be modeled by the use of ports, 
channels and interfaces. As before, communication 
details are still not abstracted in a level high enough. 

As it can be seen, current approaches fail to provide a 
mechanism for modeling hardware/software systems that 
abstracts communication details and is also suitable for 
SoC design implementation. 

 
3. SYSTEM LEVEL MODELING 

 

This paper proposes a high abstraction level 
mechanism for system modeling, where the system is 
modeled in the architectural domain, in which it is 
partitioned as computing elements that communicate 
through services. Each element is classified after the 
partitioning as hardware or software. One example of 
system modeling is shown in figure 1. It is composed of 
two modules Skin (software module), and Mahalanobis 
(hardware module), the later provides the 
mahalanobisDistance() service.  

Services implement modules functionalities. They are 
provided to other modules in the system. Services are 
composed by input data, and a result that is made 
available for its caller after its execution. In this context a 
transaction is defined as the execution of a service, from 
its call until it returns a value.  One example is shown in  
figure 2 where service 1 is called by both Module A and 
Module C.  

Transactions are classified according to the categories 
proposed by Goniat [6] and summarized in Table 1. The 
first category is type and it can be classified as 
synchronous or asynchronous. In a synchronous 
transaction both the caller module and the service 
instance are blocked until the result is received by the 
caller module. That means that the service instance is not 
available for any other call.  On the other hand, in an 
asynchronous transaction, services may return 
service_non_available responses that  resume caller 
modules  execution. 

Table 1 Communication classification summary table 

Characteristic Classification 
Type Synchronous Asynchronous 
Mode Sequential Parallel 

 

The communication mode corresponds to the way or 
sequence that services are executed, and are classified as 

sequential or parallel. Figures 2 and 3 show examples of 
parallel and sequential communication respectively.  

High level timing constraints may be applied to a 
service in the communication modeling. In this work the 
following constraints can be applied: the minimum, 
average or maximum execution time of each service. 
 

4. UML PROFILE FOR ESL DESIGNS 
 

This section presents  UML-ESL, a UML 2.0 profile 
for ESL, which enables hardware/software systems 
modeling at system  modeling abstraction level presented 
previous sections. Using UML-ESL the designer reduces 
effort to model hardware/software systems by abstracting 
communication details. It provides mechanisms for 
easing the specification of system partitioning in 
hardware and software, and the modeling of services 
including the specification of services constraints. 

The system modeled in UML-ESL, contains a smaller 
number of classes compared with the same system 
modeled in the UML profile for SoC, since it abstracts 
the communication details. Partitioning information is 
presented in this model by the classification of the 
modules in sw_module and hw_module presented in those 
modules stereotypes. 

  
Figure 1 Class Diagram Example at System Level Modeling  

The image segmentation of the Vmote design will be 
used to explain how to model systems architectures 
composed by hardware and software in a unique UML 
based environment. The image segmentation system 
example is composed by two modules, Skin, which is in 
charge of the acquisition of an image and its conversion 
to a pixel matrix, and Mahalanobis, which is responsible 
for the execution of the mahalanobis distance 
segmentation algorithm. The following sections will 
present how to model the system architecture, 
communication and design constraints using the UML-
ESL profile. 
4.1 Architectural Modeling 
 

System architecture is modeled using class diagrams, 
which are responsible for the hierarchical modules 
representation and their structures, represented by its 
attributes and services. In the class diagram the designer 
partitions the system in hardware and software parts. In 
order to support hardware/software partitioning, UML-
ESL provides stereotypes hw_module, used to identify 
modules that have to be implemented as hardware 



components, and sw_module, used to identify  modules 
that have to be implemented as software applications.  
Figure 1 presents an example of the partitioning of part of 
the VMote system. The Skin class is defined as a software 
module while the Mahalanobis class is defined as a 
hardware module. 

Each module is formed by attributes and operations, 
represented by the functions implemented by the module. 
The configuration parameters are identified by the 
parameters in the constructor. These can be configured by 
the designer. The modules of the example showed in  do 
not have any parameter. In the UML-ESL profile, 
services are identified as the operations that are visible to 
external modules, i.e. public functions. Private functions 
are not considered services in this approach, they are 
simply internal operations. 

Class diagrams are also employed to specify 
interactions between modules. The “use” arrow 
connecting two modules indicates that one module uses 
services provided by the other. 

 

4.1.1. Architectural Implementation 
The hardware and software modules of the system can 

be mapped into a base platform composed by 
processor(s), bus and memory. The hardware and 
software modules can be implemented as hardware 
elements and applications running in a processor, 
respectively. The communication among them is 
implemented by the bus and extra components integrated 
into the platform, as wrappers and drivers to allow the 
communication among the platform elements. 

 
4.2 Communication Modeling 
 

Communication among modules and transaction 
parameters are modeled in sequence diagrams. This 
diagram is used to represent interactions among modules, 
through messages that call their services. Services calls, 
including their response, will be called transactions in this 
paper. 

In the sequence diagram the designer is able to 
classify transactions according to the criteria defined in 
Table 1. The type, synchronous or asynchronous, is 
selected by the type of the arrow used to identify the 
service call. Figure 2 shows the difference between the 
representation of synchronous messages, represented by 
filled arrowheads (service 1), and asynchronous ones, 
represented by stick arrowheads (service 2). In Figure 3 
the mahalanobisDistance() service is an example of 
synchronous service. 

 Transactions execution sequence is modeled in the 
sequence diagram by the order in which  they appear 
considering the vertical axis, which is the time 
representation. In the sequential diagram the designer can 
define the transaction mode to be sequential or parallel. 
The communication mode used is represented by the 
frame namebox presented in the right top of the frame. 
The parallel combination fragment is drawn using a 
frame with the text "par" in the frame's namebox, as 
showed in figure 2.  Each operand in the frame represents 
a thread of execution performed in parallel. 

 
Figure 2 Parallel communication representation example  
The sequential combination fragment is represented 

similar to parallel communication by using the text “seq” 
in the frame's namebox, as showed in Figure 3.  As it can 
be seen, the transaction between the Skin and 
Mahalanobis modules is made by the 
mahalanobisDistance service.  This service is executed 
sequentially to the image matrix calculation (calcMatrix 
service). Notice that the use of "seq" frames is optional, 
services sequential execution  may be modeled just by  
inserting  service calls without any other extra 
information. 

 
4.3 Communication Constraints 
 

Sequence diagrams are also used to specify 
communication constraints. The user is able to define 
maximum, minimum or average time for each service. 
Constraints are represented in the diagrams as comments 
associated to the transactions. As showed in Figure 3 the 
comment indicates a maximum transaction time 
constraint of 1ms for the mahalanobisDistance service 
from the Mahalanobis hardware module. Constraints are 
identified by  reserved words defined by the profile: 
maximum_time, minimum_time, average_time, and 
data_size. 
 
4.3.1. Communication Implementation 

Service transactions and constraints can be converted 
to the communication architecture shown in figure 4. 
Transactions are composed of a request and a response 
packet. The request packet is composed by control 
information (identification of the service that will be 
executed and the data size) and data. The response packet 
is composed by the data generated by the service and a 
status. On the software side transactions are implemented 
as device drivers. On the hardware side transactions 
protocols are implemented by the device controller that 
interacts with the device drivers. The device controller 
manages the requests and responses to the appropriate 
service instance. It is responsible for: (1) converting bus 
data into the data accepted by the hardware, (2) 
implementing the communication infra-structure to break 
or group the data in order to send it to the hardware and 
(3) to reorganize the data into a format  accepted by the 



rest of the system. The device controller, as presented in 
figure 4, is directly connected to the hardware element 
and to the bus through a wrapper, the bus-controller 
interface, which converts the bus protocol to the 
controller supported protocol. 

The communication elements are implemented as 
parameterized templates in a communication library. 
Specific instances for each SoC platform are generated 
from these templates based on the UML-ESL 
specification of the system. 

Asynchronous transactions, as an example, are 
implemented by the controller using internal buffers to 
store received requests as well as extra information added 
to the request packet to identify each one. Synchronous 
transactions are implemented to re-pass requests to the 
device and  adjust the type of the data, when it is 
necessary. For parallel transactions, the service provided 
by the hardware element can also be duplicated to allow 
parallelism. Sequential transactions allow only one access 
at a time to the device respecting the implementation of 
the communication type (synchronous or asynchronous). 
 

5. RESULTS 
 

The image segmentation system, composed by two 
main modules, Skin and Mahalanobis, was modeled at 
system level using UML-ESL. The system model was 
composed by a class diagram (Figure 2), where two 
modules were identified, and a sequence diagram (Figure 
3). There were three synchronous service calls. The 
mahalanobisDistance() transactions is between a 
software and hardware module. This model lead to the 
generation of one device driver, one device controller and 
one bus interface. These components were instantiated 
from templates in a library following the characteristics 
presented in section 4.3.1. 

 
Figure 3  VMote Segmentation Sequence Diagram 

The modeled system was synthesized into a virtual 
platform as presented in the Figure 4, using some 
previously platform implemented elements (mips 
processor, simple bus and memory).   

Results show the feasibility of modeling SoCs with 
the proposed UML profile. UML-ESL abstracts 
communication details, thus reducing designers’ efforts, 
and is still capable of capturing essential systems’ 
characteristics leading to their synthesis. 

 
Figure 4 Image Segmentation Application final platform  
 

6. CONCLUSIONS 
 

In this paper, it was proposed an ESL modeling 
strategy at a high abstraction level. This paper has 
presented the definition of a UML profile for ESL 
System Level Modeling. The proposed profile decreases 
the system design effort by abstracting communication 
details. It has been shown, from a example, that a path 
from this high level model to a SoC virtual platform is 
feasible. As future work is the refinement of a synthesis 
flow that automates the generation of the communication 
infrastructure from UML-ESL specifications. 
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