
AN UDP/IP NETWORK STACK IN FPGA

Fernando Luís Herrmann, Guilherme Perin, Josué Paulo José de Freitas, Rafael Bertagnolli and João 
Baptista dos Santos Martins

Federal University of Santa Maria (UFSM) - Microelectronics Group (Gmicro)
Post-Graduate Program in Informatics (PPGI)

Av. Roraima n. 1000, Santa Maria, Rio Grande do Sul, Brazil
Email: (herrmann, guilhermeperin, josue.freitas, rafaelbertagnolli)@mail.ufsm.br, batista@inf.ufsm.br

ABSTRACT

This paper presents a proposal of a UDP/IP network 
stack in FPGA, which is the stack of the widely used in 
VoIP and  Video-conference  applications.  This  network 
node implements the Network, Transport and Link Layer 
from a traditional  stack.  This  architecture  is  integrated 
and developed using Xilinx ISE tool and synthesized to a 
Spartan-3E FPGA. We show architecture details, timing 
and area results of a practical prototyping. Our proposed 
network node show a 1960 Mbps full-duplex throughput. 
Also, we compare our  prototype and results with some 
other  three  works  in  terms  of  area  (Xilinx  slices)  and 
speed  (MHz).  Our  architecture  obtained  a  intermediate 
solution in area and is the best implementation in terms 
of speed among the compared works.

1. INTRODUCTION

Nowadays,  the  great  need  of  communication  in 
society  has  collaborated  to  appear  news  forms  of 
communication, that are more accessible and lower cost, 
for example Voice over IP (VoIP) or video conference. 
But,  in  a  microprocessor  of  general  purpose,  this 
applications  competes  equally  in  processing  time  with 
other applications, causing a overload in the processing. 
In order to solve this problem, solutions implemented in 
dedicated hardware, ASICs or FPGAs become available. 
This solutions allow that part of the processing, instead of 
being realized by the microprocessor of general purpose, 
now can be executed by a dedicated hardware.

The applications,  VoIP  and  video  conference  using 
audio  and  video  streaming,  respectively[8]  [10].  This 
type  of  application  uses  the  UDP/IP  protocol  for 
transmission data between its participants.

Some  hardware  UDP/IP  stacks  have  already  been 
realized.  In  [6],  the  author  describes  an  analysis  of 
FPGA-based  UDP/IP  stack  parallelism  for  embedded 
Ethernet connectivity. In [12] an analysis of the TCP/IP 
sub-functions  are  made  and  the  work  describes  the 
performance-critical functions that can be accelerated in 
FPGAs,  how  these  sub-functions  may  be  implemented 
and  what  speed-up  gains  that  can  be  achieved.  [11] 
Shown  a  RTP/UDP/IP  protocol  in  Virtex  FPGAs  to 
accelerating  VoIP  applications.  [1]  Proposed  5  design 
guidelines  and  a  corresponding  architecture  in  TCP/IP 
Offload Engine (TOE). [7] Propose an implementation of 
UDP/IP  protocol  stack  on  FPGA  and  its  performance 
evaluation.
__________________________
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Our  work  presents  a  stack  UDP/IP  implementation 
and makes a comparison with some other existing works.

2. NETWORK STACK

The UDP/IP protocol  is part  of  the Open Standards 
Interconnect (OSI) model. OSI is a theoretical model and 
is used to describe the behavior of a network and also to 
describe  networking  issues.  Figure  1  shows,  the  OSI 
model consists of seven layers and the layers are named 
(starting  from  the  highest  layer):  Application, 
Presentation,  Session,  Transport,  Network,  Link  and 
Physical  Layer.  From  a  TCP/UDP/IP  viewpoint  the 
Session and Presentation Layers are often included in the 
Application Layer. The OSI layers are frequently referred 
in this paper, but it’s not further explained. For a detailed 
description of the layers and protocols, see [10].

2.1. Link Layers

As  for  serial  links,  the  link  layer  provides  data 
exchange between neighboring computers as well as data 
exchange between computers within a local network. For 
the Link Layer, the basic unit of data transfer is the data 
link packet frame. A data frame is composed of a header, 
payload, and trailer.

A frame carries  the destination  link address,  source 
link address, and other control information in the header. 
The  trailer  usually  contains  the  checksum  of  the 
transported data. By using the checksum, we can find out 
whether the payload has been damaged during transfer. 
The  network-layer  packet  is  usually  included  in  the 
payload.

Figure 1. OSI and TCP/IP Model.



2.2. Network Layer

The Network Layer is responsible for establishing the 
route to be used between the originating and destination 
computers. End-to-end reliability across several physical 
links is more of a function of the Transport Layer.

The  basic  unit  of  transfer  is  a  datagram  that  is 
encapsulated in a frame. The datagram is also composed 
of a header and data field. Trailers are not very common 
in network protocols. The datagram header, together with 
data (network-layer payload), creates the payload or data 
field of the frame.

The  Network  Layer  is  used  to  establish 
communications with computer systems that lie beyond 
the local  LAN segment.  It  can do so because it has its 
own  routing  addressing  architecture,  which  is  separate 
and  distinct  from  the  Link  Layer.  Such  protocols  are 
known  as  routed  or  routable  protocols,  for  example 
Internet Protocol (IP) [9].

The  Internet  Protocol  (IP)  is  the  most  important 
protocol  of  the  Network  Layer.  IP  attempts  to  deliver 
messages to the destination, which is selected by a unique 
IP address.

Address  Resolution  Protocol  (ARP)  is  a  network-
specific  standard  protocol.  The  address  resolution 
protocol  is  responsible  for  converting  the  higher-level 
protocol  addresses  (IP  addresses)  to  physical  network 
addresses.

The  Internet  Control  Message  Protocol  (ICMP) 
protocol  is  part  of  the  Internet  Protocol  Suite.  ICMP 
messages are typically generated in response to errors in 
IP datagrams or for diagnostic or routing purposes [4].

2.3. Transport Layer

A network  layer  facilitates  the  connection  between 
two remote  computers.  As far  as  the transport  layer  is 
concerned, it acts as if there were no modems, repeaters, 
bridges,  or  routers  along  the  way.  The  transport  layer 
relies completely on the services of lower layers. It also 
expects that the connection between two computers has 
been established,  and it  can therefore  fully dedicate its 
efforts to the cooperation between two distant computers. 
Generally,  the  transport  layer  is  responsible  for 
communication  between  two  applications  running  on 
different  computers.  There  can  be  several  transport 
connections  between  two computers  at  any  given  time 
(for example, one for a virtual terminal and another for 
email).  On the network layer,  the transport  packets are 
directed  based  on  the  address  of  the  computer  (or  its 
network  interface).  On  the  transport  layer,  individual 
applications  are  addressed.  Applications  use  unique 
addresses within one computer, so the transport address is 
usually  composed  of  both  the  network  and  transport 
addresses [4].

In this case, the basic transmission unit is the segment 
that is composed of a header and payload. The transport 
packet is transmitted within the payload of the network 
packet.

The  Transport  Layer  provides  end-to-end  reliability 
by  having  the  destination  host  communicate  with  the 
source  host.  The  idea  here  is  that  even  though  lower 
layers  of  protocols  provide  reliable  checks  at  each 

transfer, the end-to-end layer double checks to make sure 
that no machine in the middle failed [2].

The Transmission Control Protocol (TCP) is the most 
used  protocol  of  Transport  Layer  which  gives  a 
connection-oriented  communication  with  reliable  data 
delivery,  duplicate  data  suppression  and  flow  control. 
Another Transport Layer protocol is the User Datagram 
Protocol  (UDP),  which  provides  an  unreliable  and 
connectionless communication service. However, UDP is 
very effective when TCP is not suited for the application 
needs, e.g. for real-time applications like audio and video 
or  in  applications  where  low latency  and  low delay  is 
preferred over reliable data delivery [5].

3. IMPLEMENTATION

   The hardware UDP/IP stack core that’s described in 
this paper is shown in figure 2. Figure 2(a) showed the 
architecture of a traditional TCP/IP stack. In figure 2(b), 
as  the  shadowed  area,  is  showed  the  cores  which  are 
entirely  implemented in the FPGA, in other  words,  the 
Transport Layer, Network Layer and Link Layer.

UDP is used for the Transport Layer. All TCP packets 
will be passed directly to the Application Layer, in other 
words, TCP packets will not be changed by the Transport 
Layer  and  this  work  must  be  done  by the Application 
Layer.

For  Network  Layer  the  Internet  Protocol  version  4 
(IPv4) is used, which gives a more area-effective design 
compared to the more recent IPv6 protocol.

The Layers, Transport, Network and Link in UDP/IP 
stack are designed using Verilog and VHSIC Hardware 
Description Language (VHDL).

   The hardware UDP/IP stack implementation use the 
design  structure  which  is  showed  in  figure  3.  This 
implementation  is  full-duplex  because  the  Transmitter 
and  the Receiver  works simultaneous and  independent. 
The subsections below provide a detailed description of 
the functionality of each block.

3.1. Control Transmitter/Receiver

These  blocks  provide  the  communication  with  the 
application  layer.  The  Control  Transmitter  receives  the 
packet  from  the  application  and  stored  it  in  the  RAM 
Transmitter  for  sending  forward  to  the  block  UDP 
Transmitter.

   The Control Receiver writes the packet from UDP 
Receiver in RAM Receiver and sends it to the application 
layer.

Figure 2. (a) Architecture of a traditional TCP/IP stack. (b) 
Architecture used by this work and which layers are 

implemented. Redraw from [8]



3.2. UDP Transmitter/Receiver

These  blocks  represents  the  transport  layer  and 
manages UDP packets.  If  the packet  a TCP, these two 
blocks just send the packet. The block UDP Transmitter 
encapsulate  the packet  with the UDP header  and sends 
out to block IP Transmitter. 

The block UDP Receiver check the packet and sends 
it  to  block  Control  Receiver  without  UDP  header 
information.

3.3. IP Transmitter/Receiver 

Represents  the  network  layer  and  these  blocks 
manages  IPv4  packets.  The  block  IP  Transmitter 
calculates the checksum and encapsulate the packet with 
the IP header.

The block IP Receiver will be verified the checksum 
of  the  packet  and  the  destination  IP-address.  Only  IP-
address that matches the core’s IP-address and broadcast 
IP-addresses  are  accepted  and  send  to  block  UPD 
Receiver  or  to  ARP  block  if  the  packet  a  Address 
Resolution Protocol (ARP). If the packet check fails the 
packet will be rejected.
               
3.4. MAC Transmitter/Receiver

These blocks represents  the link layer  and manages 
the  outcoming  and  incoming  packets.  The  MAC 
Transmitter will be send the packet to the PHY. At the 
beginning,  preamble  is  sent,  where  the last  nibble  is  a 
start of frame delimiter. The MAC transmitter then puts 
out  the  transmit  packet  to  the  PHY data  bus  and  sets 
control signals. Each byte is sent to the CRC generator, 
which progressively calculates the CRC. When the packet 
end is reached the calculated 32-bit CRC is sent.

The  MAC  Receiver  will  check  for  a  new  packet 
(preamble  from Ethernet  PHY).  Once  a  new packet  is 
detected  will  be  sent  to  the  CRC  checker,  which 
progressively calculates the checksum. When the end of 
frame is signaled from the Ethernet PHY the CRC check 

will be completed and the destination MAC-address will 
be verified. Only MAC-addresses that matches the core’s 
MAC-address  and  broadcast  MAC-addresses  are 
accepted.  If  the  packet  check  fails  the  packet  will  be 
rejected.

3.5. ARP

This  block  provide  ARP functionality  and  manages 
ARP packets.  Allowing  the  core  to  request  the  MAC 
address from other nodes when only the IP address of its 
neighbors is known. The core will also respond to ARP 
requests from neighboring nodes.

3.6. RAM Transmitter/Receiver

   These blocks just temporarily stores the packets.

3.7. CRC Checker/Generator

These blocks are identical and progressively calculate 
the Cyclic Redundancy Check (CRC). It uses the CRC32 
polynomial  for  Ethernet.  The  polynomial  is  shown 
below:

X32 + X26 + X23  + X22 + X16 + X12 + X11 + X10 + X8 + 
X7 + X5 + X4 + X2 + X1 + 1

A 32-bit  CRC provides  error  detection  in  the  case 
where line errors (or transmission collisions in Ethernet) 
result in corruption of the MAC frame. Any frame with 
an  invalid  CRC  is  discarded  by  the  MAC  Receiver 
without further processing. The MAC protocol does not 
provide any indication that a frame has been discarded 
due  to  an  invalid  CRC.  The  link  layer  CRC therefore 
protects  the  frame  from  corruption  while  being 
transmitted over the physical medium.

4. EVALUATION AND RESULTS

The UDP/IP Core  was developed  under  Xilinx  ISE 
10.1 and passed through procedures of “Synthesis” and 
“Place and Route” for the Xilinx Spartan 3E, XC3S500e-
4FG320  FPGA.  Three  simulation  sub  procedures  were 
performed:  “Functional”,  “Post  Synthesis”  and  “Post 
Place and Route”. Input values were supplied by macro 
files  and  test  benches.  Test  benches  also  provided  an 
overall  report  which  includes  signal  comparison  and 
signal  sequence  comparison,  incoming  TCP  and  UDP 
packets.

Table I shows the resource utilization and the speed 
results  of  the  UDP/IP  stack  in  the  Spartan  3E, 
XC3S500e-4FG320  FPGA.  The  fastest  blocks  for  this 
core are CRC Checker and CRC Generator due the small 
number  of  include  logic.  But,  blocks  with  more 
complexity  and  bigger  sizer  tend  to  lower  speeds,  as 
example, blocks IP Transmitter and Control Transmitter.

The maximum core speed is the same of the block IP 
Transmitter,  122.76  MHz,  because  this  block  has  the 
lowest speed. Considering this information and that this 
design  can  send  and  receive  8  bits  per  cycle  we  can 
estimate  the  maximum  throughput  roughly  about  980 
Mbps which means a 1960 Mbps full duplex throughput.

We compare our work in terms of area (Xilinx Slices) 
and speed (MHz) with other implementations and we get 

Figure 3. Block diagram of the UDP/IP core



the  results  that  can  be  visualize  in  the  figure  4.  The 
chosen  implementations  were  Löfgren  “Medium”  and 
Löfgren  “Advanced”of  [6]  and Dollas  in [3].  [6]  Cites 
three implementations, which are Minimum, Medium and 
Advanced,  but  only  Medium  and  Advanced  were 
selected,  because  the  Minimum  doesn't  have  the  ARP 
protocol  implemented.  [3]  Presents  a  complete  TCP/IP 
stack  implementation,  therefore  only  related  data  to 
UDP/IP implementation were observed.

In occupied area terms, the left part of figure 4, our 
implementation  has  some  more  slices  than  Löfgren 
“Medium”, but when comparing with Löfgren “Medium” 
and Dollas our occupied area is smaller. The speed of the 
architecture is presented at the right side of the figure 4 
and  is  possible  see  that  our  work  presented  a  better 
performance.

Our  implementation  presents  2  times  more  speed 
performance  that  Löfgren  “Medium”  and  occupies  just 
300 more slices. Depending of the application purposes, 
is accepted that a more few elements in area terms and a 
better  speed  performance  is  advantageous  for 
transmission and reception data.

5. CONCLUSIONS

This paper shows a UDP/IP network stack in FPGA. 
We present a core that is successfully implemented and 

verified  in  Xilinx  Spartan  3E.  The  hardware  UDP/IP 
network stack is using around 14% (1,321 Xilinx slices) 
of Xilinx Spartan 3E XC3S500e-4FG320 FPGA and its 
maximum  frequency  operation  is  122.76MHz. 
Considering the maximum frequency and that this design 
can send and receive 8 bits per cycle we can estimate the 
maximum  throughput  roughly  about  980  Mbps  which 
means a 1960 Mbps full duplex throughput.

Also, we present a comparison with other three works, 
in  terms  of  area  (Xilinx  slices)  and  speed  (MHz).  In 
occupied area, our implementation is like an intermediate 
solution. But, in speed our work obtained the best results 
among  the  compared  works.  Our  implementation 
presents  2 times more  speed  performance  that  Löfgren 
“Medium” and occupies just 300 more slices. Depending 
of the application purposes, is accepted that a more few 
elements in area terms and a better speed performance is 
advantageous for transmission and reception data.
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