
AN UDP/IP NETWORK STACK IN FPGA

Fernando Luís Herrmann, Guilherme Perin, Josué Paulo José de Freitas, Rafael Bertagnolli and João
Baptista dos Santos Martins

Federal University of Santa Maria (UFSM) - Microelectronics Group (Gmicro)
Post-Graduate Program in Informatics (PPGI)

Av. Roraima n. 1000, Santa Maria, Rio Grande do Sul, Brazil
Email: (herrmann, guilhermeperin, josue.freitas, rafaelbertagnolli)@mail.ufsm.br, batista@inf.ufsm.br

ABSTRACT

This paper presents a proposal of a UDP/IP network
stack in FPGA, which is the stack of the widely used in
VoIP and Video-conference applications. This network
node implements the Network, Transport and Link Layer
from a traditional stack. This architecture is integrated
and developed using Xilinx ISE tool and synthesized to a
Spartan-3E FPGA. We show architecture details, timing
and area results of a practical prototyping. Our proposed
network node show a 1960 Mbps full-duplex throughput.
Also, we compare our prototype and results with some
other three works in terms of area (Xilinx slices) and
speed (MHz). Our architecture obtained a intermediate
solution in area and is the best implementation in terms
of speed among the compared works.

1. INTRODUCTION

Nowadays, the great need of communication in
society has collaborated to appear news forms of
communication, that are more accessible and lower cost,
for example Voice over IP (VoIP) or video conference.
But, in a microprocessor of general purpose, this
applications competes equally in processing time with
other applications, causing a overload in the processing.
In order to solve this problem, solutions implemented in
dedicated hardware, ASICs or FPGAs become available.
This solutions allow that part of the processing, instead of
being realized by the microprocessor of general purpose,
now can be executed by a dedicated hardware.

The applications, VoIP and video conference using
audio and video streaming, respectively[8] [10]. This
type of application uses the UDP/IP protocol for
transmission data between its participants.

Some hardware UDP/IP stacks have already been
realized. In [6], the author describes an analysis of
FPGA-based UDP/IP stack parallelism for embedded
Ethernet connectivity. In [12] an analysis of the TCP/IP
sub-functions are made and the work describes the
performance-critical functions that can be accelerated in
FPGAs, how these sub-functions may be implemented
and what speed-up gains that can be achieved. [11]
Shown a RTP/UDP/IP protocol in Virtex FPGAs to
accelerating VoIP applications. [1] Proposed 5 design
guidelines and a corresponding architecture in TCP/IP
Offload Engine (TOE). [7] Propose an implementation of
UDP/IP protocol stack on FPGA and its performance
evaluation.

The authors would like to thank CNPq and the
FINEP/SEBRAE program for supporting the project
VoIPWIFI and this work.

Our work presents a stack UDP/IP implementation
and makes a comparison with some other existing works.

2. NETWORK STACK

The UDP/IP protocol is part of the Open Standards
Interconnect (OSI) model. OSI is a theoretical model and
is used to describe the behavior of a network and also to
describe networking issues. Figure 1 shows, the OSI
model consists of seven layers and the layers are named
(starting from the highest layer): Application,
Presentation, Session, Transport, Network, Link and
Physical Layer. From a TCP/UDP/IP viewpoint the
Session and Presentation Layers are often included in the
Application Layer. The OSI layers are frequently referred
in this paper, but it’s not further explained. For a detailed
description of the layers and protocols, see [10].

2.1. Link Layers

As for serial links, the link layer provides data
exchange between neighboring computers as well as data
exchange between computers within a local network. For
the Link Layer, the basic unit of data transfer is the data
link packet frame. A data frame is composed of a header,
payload, and trailer.

A frame carries the destination link address, source
link address, and other control information in the header.
The trailer usually contains the checksum of the
transported data. By using the checksum, we can find out
whether the payload has been damaged during transfer.
The network-layer packet is usually included in the
payload.

Figure 1. OSI and TCP/IP Model.

2.2. Network Layer

The Network Layer is responsible for establishing the
route to be used between the originating and destination
computers. End-to-end reliability across several physical
links is more of a function of the Transport Layer.

The basic unit of transfer is a datagram that is
encapsulated in a frame. The datagram is also composed
of a header and data field. Trailers are not very common
in network protocols. The datagram header, together with
data (network-layer payload), creates the payload or data
field of the frame.

The Network Layer is used to establish
communications with computer systems that lie beyond
the local LAN segment. It can do so because it has its
own routing addressing architecture, which is separate
and distinct from the Link Layer. Such protocols are
known as routed or routable protocols, for example
Internet Protocol (IP) [9].

The Internet Protocol (IP) is the most important
protocol of the Network Layer. IP attempts to deliver
messages to the destination, which is selected by a unique
IP address.

Address Resolution Protocol (ARP) is a network-
specific standard protocol. The address resolution
protocol is responsible for converting the higher-level
protocol addresses (IP addresses) to physical network
addresses.

The Internet Control Message Protocol (ICMP)
protocol is part of the Internet Protocol Suite. ICMP
messages are typically generated in response to errors in
IP datagrams or for diagnostic or routing purposes [4].

2.3. Transport Layer

A network layer facilitates the connection between
two remote computers. As far as the transport layer is
concerned, it acts as if there were no modems, repeaters,
bridges, or routers along the way. The transport layer
relies completely on the services of lower layers. It also
expects that the connection between two computers has
been established, and it can therefore fully dedicate its
efforts to the cooperation between two distant computers.
Generally, the transport layer is responsible for
communication between two applications running on
different computers. There can be several transport
connections between two computers at any given time
(for example, one for a virtual terminal and another for
email). On the network layer, the transport packets are
directed based on the address of the computer (or its
network interface). On the transport layer, individual
applications are addressed. Applications use unique
addresses within one computer, so the transport address is
usually composed of both the network and transport
addresses [4].

In this case, the basic transmission unit is the segment
that is composed of a header and payload. The transport
packet is transmitted within the payload of the network
packet.

The Transport Layer provides end-to-end reliability
by having the destination host communicate with the
source host. The idea here is that even though lower
layers of protocols provide reliable checks at each

transfer, the end-to-end layer double checks to make sure
that no machine in the middle failed [2].

The Transmission Control Protocol (TCP) is the most
used protocol of Transport Layer which gives a
connection-oriented communication with reliable data
delivery, duplicate data suppression and flow control.
Another Transport Layer protocol is the User Datagram
Protocol (UDP), which provides an unreliable and
connectionless communication service. However, UDP is
very effective when TCP is not suited for the application
needs, e.g. for real-time applications like audio and video
or in applications where low latency and low delay is
preferred over reliable data delivery [5].

3. IMPLEMENTATION

 The hardware UDP/IP stack core that’s described in
this paper is shown in figure 2. Figure 2(a) showed the
architecture of a traditional TCP/IP stack. In figure 2(b),
as the shadowed area, is showed the cores which are
entirely implemented in the FPGA, in other words, the
Transport Layer, Network Layer and Link Layer.

UDP is used for the Transport Layer. All TCP packets
will be passed directly to the Application Layer, in other
words, TCP packets will not be changed by the Transport
Layer and this work must be done by the Application
Layer.

For Network Layer the Internet Protocol version 4
(IPv4) is used, which gives a more area-effective design
compared to the more recent IPv6 protocol.

The Layers, Transport, Network and Link in UDP/IP
stack are designed using Verilog and VHSIC Hardware
Description Language (VHDL).

 The hardware UDP/IP stack implementation use the
design structure which is showed in figure 3. This
implementation is full-duplex because the Transmitter
and the Receiver works simultaneous and independent.
The subsections below provide a detailed description of
the functionality of each block.

3.1. Control Transmitter/Receiver

These blocks provide the communication with the
application layer. The Control Transmitter receives the
packet from the application and stored it in the RAM
Transmitter for sending forward to the block UDP
Transmitter.

 The Control Receiver writes the packet from UDP
Receiver in RAM Receiver and sends it to the application
layer.

Figure 2. (a) Architecture of a traditional TCP/IP stack. (b)
Architecture used by this work and which layers are

implemented. Redraw from [8]

3.2. UDP Transmitter/Receiver

These blocks represents the transport layer and
manages UDP packets. If the packet a TCP, these two
blocks just send the packet. The block UDP Transmitter
encapsulate the packet with the UDP header and sends
out to block IP Transmitter.

The block UDP Receiver check the packet and sends
it to block Control Receiver without UDP header
information.

3.3. IP Transmitter/Receiver

Represents the network layer and these blocks
manages IPv4 packets. The block IP Transmitter
calculates the checksum and encapsulate the packet with
the IP header.

The block IP Receiver will be verified the checksum
of the packet and the destination IP-address. Only IP-
address that matches the core’s IP-address and broadcast
IP-addresses are accepted and send to block UPD
Receiver or to ARP block if the packet a Address
Resolution Protocol (ARP). If the packet check fails the
packet will be rejected.

3.4. MAC Transmitter/Receiver

These blocks represents the link layer and manages
the outcoming and incoming packets. The MAC
Transmitter will be send the packet to the PHY. At the
beginning, preamble is sent, where the last nibble is a
start of frame delimiter. The MAC transmitter then puts
out the transmit packet to the PHY data bus and sets
control signals. Each byte is sent to the CRC generator,
which progressively calculates the CRC. When the packet
end is reached the calculated 32-bit CRC is sent.

The MAC Receiver will check for a new packet
(preamble from Ethernet PHY). Once a new packet is
detected will be sent to the CRC checker, which
progressively calculates the checksum. When the end of
frame is signaled from the Ethernet PHY the CRC check

will be completed and the destination MAC-address will
be verified. Only MAC-addresses that matches the core’s
MAC-address and broadcast MAC-addresses are
accepted. If the packet check fails the packet will be
rejected.

3.5. ARP

This block provide ARP functionality and manages
ARP packets. Allowing the core to request the MAC
address from other nodes when only the IP address of its
neighbors is known. The core will also respond to ARP
requests from neighboring nodes.

3.6. RAM Transmitter/Receiver

 These blocks just temporarily stores the packets.

3.7. CRC Checker/Generator

These blocks are identical and progressively calculate
the Cyclic Redundancy Check (CRC). It uses the CRC32
polynomial for Ethernet. The polynomial is shown
below:

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 +
X7 + X5 + X4 + X2 + X1 + 1

A 32-bit CRC provides error detection in the case
where line errors (or transmission collisions in Ethernet)
result in corruption of the MAC frame. Any frame with
an invalid CRC is discarded by the MAC Receiver
without further processing. The MAC protocol does not
provide any indication that a frame has been discarded
due to an invalid CRC. The link layer CRC therefore
protects the frame from corruption while being
transmitted over the physical medium.

4. EVALUATION AND RESULTS

The UDP/IP Core was developed under Xilinx ISE
10.1 and passed through procedures of “Synthesis” and
“Place and Route” for the Xilinx Spartan 3E, XC3S500e-
4FG320 FPGA. Three simulation sub procedures were
performed: “Functional”, “Post Synthesis” and “Post
Place and Route”. Input values were supplied by macro
files and test benches. Test benches also provided an
overall report which includes signal comparison and
signal sequence comparison, incoming TCP and UDP
packets.

Table I shows the resource utilization and the speed
results of the UDP/IP stack in the Spartan 3E,
XC3S500e-4FG320 FPGA. The fastest blocks for this
core are CRC Checker and CRC Generator due the small
number of include logic. But, blocks with more
complexity and bigger sizer tend to lower speeds, as
example, blocks IP Transmitter and Control Transmitter.

The maximum core speed is the same of the block IP
Transmitter, 122.76 MHz, because this block has the
lowest speed. Considering this information and that this
design can send and receive 8 bits per cycle we can
estimate the maximum throughput roughly about 980
Mbps which means a 1960 Mbps full duplex throughput.

We compare our work in terms of area (Xilinx Slices)
and speed (MHz) with other implementations and we get

Figure 3. Block diagram of the UDP/IP core

the results that can be visualize in the figure 4. The
chosen implementations were Löfgren “Medium” and
Löfgren “Advanced”of [6] and Dollas in [3]. [6] Cites
three implementations, which are Minimum, Medium and
Advanced, but only Medium and Advanced were
selected, because the Minimum doesn't have the ARP
protocol implemented. [3] Presents a complete TCP/IP
stack implementation, therefore only related data to
UDP/IP implementation were observed.

In occupied area terms, the left part of figure 4, our
implementation has some more slices than Löfgren
“Medium”, but when comparing with Löfgren “Medium”
and Dollas our occupied area is smaller. The speed of the
architecture is presented at the right side of the figure 4
and is possible see that our work presented a better
performance.

Our implementation presents 2 times more speed
performance that Löfgren “Medium” and occupies just
300 more slices. Depending of the application purposes,
is accepted that a more few elements in area terms and a
better speed performance is advantageous for
transmission and reception data.

5. CONCLUSIONS

This paper shows a UDP/IP network stack in FPGA.
We present a core that is successfully implemented and

verified in Xilinx Spartan 3E. The hardware UDP/IP
network stack is using around 14% (1,321 Xilinx slices)
of Xilinx Spartan 3E XC3S500e-4FG320 FPGA and its
maximum frequency operation is 122.76MHz.
Considering the maximum frequency and that this design
can send and receive 8 bits per cycle we can estimate the
maximum throughput roughly about 980 Mbps which
means a 1960 Mbps full duplex throughput.

Also, we present a comparison with other three works,
in terms of area (Xilinx slices) and speed (MHz). In
occupied area, our implementation is like an intermediate
solution. But, in speed our work obtained the best results
among the compared works. Our implementation
presents 2 times more speed performance that Löfgren
“Medium” and occupies just 300 more slices. Depending
of the application purposes, is accepted that a more few
elements in area terms and a better speed performance is
advantageous for transmission and reception data.

6. REFERENCES

[1] S.-M. Chung, C.-Y. Li, H.-H. Lee, J.-H. Li, Y.-C. Tsai, and
C.-C. Chen. Design and implementation of the high speed
TCP/IP offload engine. In Proceedings of the 7th International
Symposium on Communications and Information
Technologies, pages 574–579, 2007.

[2] D. E. Comer. Internetworking with TCP/IP. Volume 1.
Prentice Hall, 5th edition, July 2005.

[3] A. Dollas, I. Ermis, I. Koidis, I. Zisis, and C. Kachris. An
open TCP/IP core for reconfigurable logic. In 13th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM'05), pages 297–298, 2005.

[4] L. Dostálek and A. Kabelová. Understanding TCP/IP: A
Clear And Comprehensive Guide. Packt Publishing, April 2006.

[5] P.-K. Lam and S. Liew. UDP-Liter: an improved UDP
protocol for real-time multimedia applications over wireless
links. In 1st International Symposium on Wireless
Communication Systems, pages 314–318, 2004.

[6] A. Löfgren, L. Lodesten, S. Sjoholm, and H. Hansson. An
analysis of FPGA-based UDP/IP stack parallelism for
embedded Ethernet connectivity. In Proceedings of NORCHIP
Conference, Oulu, Finland, pages 94–97, 2005.

[7] K. Morita and K. Abe. Implementation of UDP/IP protocol
stack on FPGA and its performance evaluation. In Proceedings
of IPSJ General Conference Special5, pages 157–158, 2001.

[8] A. Rodriguez, J. Gatrell, and R. Peschke. TCP/IP Tutorial
and Technical Overview. Prentice Hall, 7th edition, Upper
Saddle River, NJ, USA, 2001.

[9] K. S. Siyan and T. Parker. TCP/IP Unleashed. Sams
Publishing, 3rd edition, August 2002.

[10] A. S. Tanenbaum. Computer Networks. Prentice Hall, 4th
edition, August 2002.

[11] A. Tavoularis, M. G. Manousos, D. Economou, and G.
Lykakis. Accelerating VOIP applications using Virtex FPGAs.
In FPGA and Structured ASIC Journal, 2004.

[12] L. Weidong. Designing TCP/IP Functions In FPGAs.
Master’s thesis, Code Number CE-MS-2003-09, 2003.

Figure 4. Projects comparison in area and speed

Table I. Resource utilization and subsystem speed

	An UDP/IP network stack in FPGA
	Abstract

