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ABSTRACT

Plasma etch is the most suitable technique for advanced 
micro- and nanofabrication.  The comprehension of 
plasma behavior is of great importance to develop models 
which can predict fabricated structures.  A two-
dimensional numeric model of plasma using the Vlasov 
equation has been developed.  This model allows for the 
analysis of low density plasma, composed of particles 
which are not subject to collisions.   The simulation 
method applied is the particle-mesh and is carried out 
with SCILAB. Both, unidimensional and bidimensional 
plasmas with classic interaction cases are studied.

1. INTRODUCTION

Pattern transfer by plasma etching is an integral part of 
advanced microelectronics fabrication. Wet etching has 
several limitations, including poor adhesion of the 
masking layer to the substrate, inability of liquid etchants 
to penetrate narrow and high-aspect-ratio features. So 
plasma etching has great advantages, such as: high etch 
rate, uniformity of etch rate across the surface, high 
selectivity of the layer to be etched with respect to both 
the masking material and to the underlying layers, a 
residue-free surface after etch and others [1].

In etching processes by high-density plasma it is 
possible to achieve characteristics such as large etching 
depth, high anisotropy and low surface roughness, which 
are sought after characteristics in micro- and 
nanofabrication.  Among other advantages, one could
mention: better quality and control; the reagents can be 
monitored with spectrometric methods, allowing for the 
determination of the process end. Hence, it is very 
important to understand the interactions and phenomena 
that occur with plasma in certain applications.

Due the importance of the plasma mentioned before, 
this work presents a method for numeric modeling of 
plasma etching. The idea is consider a computational 
mesh with forbidden regions.  The forbidden regions are 
regions in which the particles are not allowed to enter.  In 
this work, the chamber walls are hard forbidden regions, 
and the material to be etched is a soft forbidden region.  
For the soft forbidden region, if a particle reaches it with 
energy higher than a minimum, the particle will penetrate 
this region, and after this event, this corresponding region 
mesh will become allowed.  This means that an etching 
event occurred.  For particles with energy below 
minimum or reaching a hard forbidded region, the 
conservation of energy and moment is applied.   An 
illustration of the mesh is presented in Figure 1.

Figura 1: Illustration of the model proposed for the simulation of 
plasma etching, where the darkened region corresponds to a forbidden 
region, which will be etched depending on the energy with which the 
particles collide to this specific region.

Due to the easiness of altering plasma parameters and 
conditions in a computational model, such as 
temperature, oscillation frequency, number of particles, 
charge density and initial conditions, it becomes faster 
and more feasible to study the plasma behavior via a 
computational model instead of by experimentation.

The simulation model to plasma used is the particle-
mesh, which exploits the force-at-a-point formulation and 
a field equation for the potential and a NGP (Nearest-
Grid-Point) scheme for the plasma was obtained. Since 
the model is based on the Vlasov equation, the particles 
are not subject to collision. 

This work begins with a brief introduction. Then, the 
plasma phenomena and equations are presented. After, 
simulations results are presented and discussed. Finally 
the conclusions.

2. PLASMA

Plasma is an ionized medium composed by free electrons, 
ions and neutral atoms in varying proportions and 
exhibits a collective behavior. The quantity of charged 
particles depends on the temperature and creation
method. The three main phenomena that characterize 
matter in plasma state are: emission of electromagnetic 
radiation, Debye shielding, and collective oscillations due 
to coulombian forces.

The electric field shielding phenomenon or Debye 
shielding is related to the system equivalent charge, 
which exponentially decays with a time constant given by 
the Debye length, as follows:

0. D

x

eqq q e
 

  
 

This explains the quasi-neutrality of plasma, in which a 
disturbing electric field that might eventually appear in its 



interior must nullify itself to distances much longer than 
the Debye length. 

Besides this quasi-neutrality, other criteria for the 
existence of plasma exist. The number of particles inside 
the Debye sphere must be sufficiently large for the 
electric field shielding to be efficient and the frequency of 
collisions between the charged particles and the gas’ 
neutral atoms must be smaller than the frequency of the 
plasma oscillation.

3. PHYSICAL ANALYSIS OF THE SYSTEM

The mathematical model that was considered for the 
plasma holds a limited subset of the phenomena that 
occur in real plasma. Assuming conservation of charge, 
no collisions (kinetic energy much greater than potential 
energy), and velocity of the electrons are much smaller 
than the speed of light and extending the system in 
reference [2] for two dimensions, the bidimensional 
physical model is obtained.  In this model, the energy 
dissipation is neglected.
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The equations for the Debye length and the frequency 
of plasma oscillation are respectively [2]:
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4. DISCRETIZATION OF THE MATHEMATICAL 
MODEL

For the implementation of the computational algorithm it 
is necessary to discretize the equations of the proposed 
physical model. Due to computational reasons it is not 
feasible to accomplish the model for all of the plasma’s 
particles, thus superparticles are used. Each superparticle 
is constituted of a reasonably large number of particles 
and the number of superparticles in the system is so that 
it keeps the physical characteristics of the system.

4.1. Equations of motion
Using the same analysis done in the direction x [2] holds 
for the direction y since they can be solved separately 

due to the decoupling, the discretized equations of motion 
of the bidimensional system’s superparticles, where SN is 

the number of electrons of the plasma per unit of length 
in the direction z , are given by:
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For the approximations and the system to respond 
satisfactorily, some conditions must be met. The number 
of superparticles in a Debye length must be sufficiently 
large so that the moment fluctuations are small. The value 
of DT must be chosen so that the plasma oscillations can 
be followed adiabaticaly.

2pDT 

4.2. Equations for the potential and the electric field
The computational mesh is the region of space in which 
the model simulation occurs. In the case of two 
dimensions, the computational mesh of area A is split in 

cells of area 2H . The points where the calculations of the 
potential, the electric field and the charge density are 
performed are called mesh points, which correspond to 
the midpoint of each cell in the computational mesh [2].
Therefore all of the superparticles inside a given cell are 
subject to the same potential and electric field. Let xN be 

the number of points in the direction x and yN the 

number of points in the direction y, then the area of the 
computation mesh is given by:
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The walls of the mesh are considered to be hard and 

conductive, and the length in the direction x and in the 
direction y must be longer than the Debye length.

Using the techniques for discretization [2], Poisson’s 
equation in two dimensions assumes the form:
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where ( , )p kx y is the charge density in the cell of mesh 

point ( , )p kx y .

So the electric field equation in two dimensions 
assumes the form [2]:
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4.3. Charge assignment and force interpolation
Using the method used in [2] to two dimensions, the 
discretized equation of charge density inside a cell of 
mesh point ( , )p kx y is given by:
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Since the forces of the superparticles depend on the 
value of the electric field to which they are submitted and 
the electric field is calculated in the midpoint of each cell, 
then all of the superparticles inside a given cell will feel 
the same intensity of force.

Thus the calculation of the force is obtained with the 
following expressions, using the function W:
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5. SIMULATION

The plasma modeling was done using the SCILAB 
software, a scientific program for numeric computation 
[3].  Plasma analyses were carried out in one and two 
dimensions. For the following plots, the following 
simulation parameters were used: 1000pN  (total 

number of superparticles), 15gN  (number of mesh 

points), 0,25p DT  (stable) and 5 DH  .

In Figure 2, it can be observed that the energy of the 
system is being preserved, as expected for a system with  
charge conservation, periodic boundary conditions and 
that is not submitted to external forces, that is, the energy 
of the particles depend solely on the initial conditions and 
their interaction within the system. Actually there is an
energy fluctuation. Such fluctuation is expected and 
caused by the software’s numeric approximation. From 
the phase space plots of the one-dimensional system it is 
possible to analyze the spreading of the particles and the 
plasma oscillation.

From Figures 3 and 4 it can be observed that the 
behavior of the superparticles inside the computational 
mesh is in concordance with the expected for classic 
plasma model. 

From the bidimensional model one can analyze the 
movement of the particles considering the moment 
conservation, that is, the particles are subject to elastic 
reflection when they collide with the walls of the 
computational mesh. Thus, with the moment and charge 
conservation and with the system isolated from 
interference of external sources, the energy of the system 
has to be conserved.

The plasma simulated in two dimensions has the 
following parameters: 1920pN  , 8x yN N  , 

0,01pDT  and 5x y DH H   . The initial 

distribution of the superparticles positions is uniform and 
the normalized velocities have a normal distribution, 
where half of the superparticles have velocity 0,05 and 
the other half -0,05 with variance of 0,01.

Figure 2: Plot of the total system energy for the unidimensional plasma 
model, showing the energy fluctuation.

Figure 3: Phase space plot of the initial system state, with the initial 
distribution uniform in the position and normal velocity distribution, 
where half of the superparticles have normalized velocity 1  and the 
other half -1 with a variance of 0,03.

From Figure 5 it can be observed that the energy is 
conserved, displaying a minor fluctuation, as in the 
unidimensional case.

The bidimensional model was done considering the 
system to be adiabatic, so that the displacement of the 
particles in short periods of time is almost undetectable. 
From Figures 6 and 7, the movement of the particles is 
close to the expected for an adiabatic system. However 
their displacement should only be perceivable for a larger 
DT interval. Such fact needs to be better analyzed and 
reducing even more the discrete time parameter (DT) it is 
expected a better evolution of the displacement of the 
particles in an adiabatic system.

The bidimensional model implemented can be used to 
model the applications that happen with the aid of 
plasma, such as plasma etching. Using the proposed idea
for numeric simulation of plasma etching, the following 
results were obtained using 1740 superparticles, 6 

forbidden regions, 8x yN N  , 0,01p DT  ,

5x y DH H   .
From Figure 8 it can be observed that the total energy 

of the system is practically constant while anyone of the 
superparticles collides with the forbidden regions. The 
part of the plot where the energy is descending 
correspond to the lost of superparticle´s energy due the 
inelastic collision with the forbidden regions when the 
energy is higher than a minimum energy, that is, the 
forbidden regions are being allowed. Finally, when the 
total energy stabilize in a value lesser than the initial 
energy of the system means that all six forbidden regions 



are now allowed and the system look like the 
bidimensional case explained previously. Due to this 
descent that happens with the energy of the system, an 
external source is needed so that the energy is kept 
constant, as is the case with real plasma. Such model of 
plasma etching is being studied and implemented for the 
analysis of this application so important to 
microelectronics.

Figure 4: Phase space plot of the system at DT=100, illustrating the 
spreading of the superparticles within the plasma.

Figure 5: Plot of the total system energy of the bidimensional plasma 
model, showing the fluctuation of the energy.

Figure 6: Plot illustrating the positions and the velocity vectors in a 
sample of the superparticles at DT=200 within the computational mesh.

Figure 7: Plot illustrating the positions and the velocity vectors in a 
sample of the superparticles at DT=208 within the computational mesh.

Figura 8: Plot of the total energy of the numeric simulation of plasma 
etching, showing the descending of the energy due the collision of the 
superparticles with the forbidden regions.

6. CONCLUSION

One and two-dimensional plasma models were 
studied and implemented using the Vlasov equation. The 
computation model was obtained from the discretization 
of the equations admitted in the physical analysis of the 
system and implemented on SCILAB. Although the 
model is simplified, with classical interactions and with 
the particles not being subject to collision between them, 
the results could capture the behavior of the particles, 
their spreading as a function of time and the analysis of 
phenomena that occur within the plasma. Besides, 
computationally, it is done faster and with greater 
versatility, for it suffices to adjust the system to the 
desired parameters.

For the proposed system in which the charge was 
totally preserved and had no external sources, both the 
unidimensional model with periodic boundary conditions  
or the bidimensional model with elastic collisions 
between the particles and the walls of the mesh obtained 
energy practically constant, with a minor fluctuation due 
to the software’s numeric approximations. Therefore, the 
energy obtained is in concordance with the expected 
results for a conservative system.

The energy obtained in the proposed model for 
numeric simulation of plasma etching is in concordance 
with the expected too, with the total energy of the system 
descending due the collision of the particles with the 
matter which want to etch.

The possibility of extending this model, adjusting the 
needed particularities to the application that one desires 
to simulate, makes it a great instrument for the study of 
plasma and its applications.
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