
PLANAR TRANSISTOR NETWORK VISUALIZATION ALGORITHM

Rafael H. da Silva, Vinicius Callegaro, André I. Reis, Renato P. Ribas

Instituto de Informática, UFRGS
Av. Bento Gonçalves, 9500 – CEP 91501-970, Porto Alegre, Brazil

{rhsilva, andreis, rpribas}@inf.ufrgs.br

ABSTRACT

The visualization of switch networks is a very

interesting tool for analysis and verification of logic cells

generated automatically. In this context, the use of graph

theory is very useful to attain this objective. The proposed

algorithm satisfies this necessity to represent

complementary series/parallel and partially “bridge”

network logic styles, avoiding any wire crossing. A tool

prototype is available.

1. INTRODUCTION

CMOS design is currently the most used and well

established logic style applied by the modern industry of

microelectronics. Meantime, the handcraft design as well

as the execution of all different design flow steps and

tasks is prone of mistakes. In this sense, it is important to

build CAD tools that provide good assistance in the

creation of projects of integrated circuits.

An import help is offered by the visualization of

transistor networks that represent CMOS logic gates. This

problem consists in transforming switch networks in a

pleasant visual description that contains all network

components appropriately connected by wires (lines).

This work presents a methodology to automatically

generate the visual representation of logic networks from

a textual description. In order to achieve this goal, some

concepts from graph theory has been applied. In

literature, we have found few publications that use graph

theory and graph drawing. Thus, this knowledge needs to

be adapted for application in the proposed tool.

Next session presents a brief definition about CMOS

logic gates. Then, the proposed algorithm to obtain the

components position is described. Finally, the results and

conclusions about this work are outlined.

2. CMOS LOGIC GATES

CMOS logic gates can be divided in two types of

logic styles known as complementary series-parallel

topologies (denominated here as SP) and “bridge” or non-

series-parallel networks (referred here as NSP).

As described in [1], SP logic style is an arrangement

of series and parallel transistors in two separated logic

planes: PMOS pull-up and NMOS pull-down ones. An

example of this style occurs in the NOR transistor

network visualization, as illustrated in Fig. 1.

Figure 1 – CMOS pull-down and pull-up plane of NOR

gate.

The NSP logic style, in turn, allows sometimes to

build logic functions using less transistors than SP

approach [2]. Fig. 2 shows a case that the SP pull-down

plane requires 8 transistors to represent the function,

while the same logic behavior in NSP needs only 5

transistors. However, the NSP cannot be obtained through

logic equations.

 (a) (b)

Figure 2 – Function f=!(a*d+a*c*e+b*e+b*c*d): (a),

bridge-based arrangement (b) SP logic style.

Moreover, other logic styles as pass-transistor logic

(called as PTL) have been exploited to guarantee some

electrical advantages. PTL proposes to combine PMOS

and NMOS devices in the same plane as described in [3].

Switch networks can be also qualified as planar

network or non-planar one. Planar networks attend to the

essential characteristics: There is a way to represent the

network in a plane avoiding transistors crossing and with

all terminals (Vdd, Gnd an output node) positioned in

contact with the external face. It is observed in SP

networks. A non-planar network is showed in Fig. 3. This

situation usually occurs in NSP arrangements.

 (a) (b)

Figure 3 – No planarity conditions, (a) transistors

crossing, (b) terminal node is surrounded.

3. PROPOSED ALGORITHM

The input of the method is a textual description of the

transistor network. This description is translated into a

multi-graph representation in order to be manipulated.

The algorithm generates the visual representation by

compressing the switch arrangement, through series and

parallel device associations, in order to identify the

network type SP or NSP. In the case of a SP network, the

algorithm is applied directly by decompression

(expanding) the structure. Otherwise, the NSP network is

transformed or shared in SP networks. The flowchart in

Fig. 4 represents these steps.

Figure 4 –Algorithm flowchart.

3.1 Data Structure

The procedure maps a network to a multi-graph

representation. A multi-graph G consists in a triple of

nodes (vertexes) set V(G), an edges set and a relation for

each edge has two vertex, that in this work need to be

distinct. A detailed explanation about graph theory and

multi-graphs can be found in [4] and in [1], respectively.

Nodes labeled in network are mapped as V(G). The

transistors (or switches) are equivalent to the edges. Also,

a relation that links each transistor to two distinct vertexes

exists. Moreover, the structure is extended to have the

vertex positions in the drawing and the edges to have their

dimensions. The only warn about this mapping is which

the terminal nodes are kept as specific references,

definition not covered in graph theory. Initially, the graph

drawing techniques were studied to construct a good

planar network representation, avoiding transistors

crossing. But, the graph theory and algorithms do not

work with the definition of such special nodes or

terminals. Without these restrictions, terminals can be

surrounded by transistors. This situation must be avoided.

3.2 Compression

In the first step, a compression series-parallel is

accomplished to obtain the dimensions of each edge

generate by compression. This data are necessary to

discover the position of each component, as illustrated in

decompression step.

In the series-parallel compression discussed in [1], all

multiple edges joining the same two vertexes (parallel

edges) are merged into single edge. In the same way, the

edges connecting vertexes with 2-degree (series edges)

are merged into single edge. Notice that this merge causes

the suppression of the 2-degree vertex. This procedure is

only allowed if the vertex is not a special vertex. The

relationship between compressed edges and the original

ones are saved to be used in the decompression step.

Recursively, it is done until no edge compressions are

detected.

3.3 Setting edges dimension

Once finished the compression, it can obtain the edges

dimensions. For definition in this work, “height” is the

number of transistors in series and “length” is the number

of transistors in parallel that belong to an edge. All

original transistors have their dimensions equal to one.

The evaluation begins by the first edges generated

through the first parallel compression. In this case, it must

sum the length of all compressed edges to obtain its

length. To achieve its height, the algorithm has to find the

highest in its compressed edges. Next, the edges

generated by the first series compression are examined.

The length is extracted through longest in its compressed

edges. To obtain the height, it must sum the heights of all

its compressed edges. It is done until all edges have its

dimensions known.

3.4 Detecting the network

After the compression, the network type needs to be

identified because the next procedure only works using

SP network. To draw the NSP networks, a pre-processing

is necessary. This task can be made by counting the

number of edges. In the case that the graph presents only

compressed edges then the network is a SP type,

otherwise the network is a NSP one.

3.5 Finding the SP networks components position

Initially, the first node treated must be a terminal

node. It is necessary because graph theory treats all nodes

as a set without any order relation. Meanwhile, this

characteristic allows the reuse of this procedure to obtain

the SP arrangements. Moreover, it permits to draw only a

plane with the same procedure. The visual generation

consists in the following sub steps, always saving the

transistor vertexes position.

The network decompression is done to obtain the

transistors positions. In series decompression case, in

order to determine which edges recovered must be drawn

first, it is necessary to localize decompressed edges that

have relation with the actual node. Next, it determines the

new actual node equal to another decompress edge vertex

and use the edge height to obtain the next position. Then,

the same process is done to other edges.

In series decompression case, the edge length is used

to define its position. For each decompressed edge to take

advantage of its length to obtain the next position of the

next parallel transistor.

Other components as terminal nodes and lines can be

easily drawn using the vertexes position.

Fig. 5 and Fig. 6 illustrate the process to obtain the

positions, which is done until all transistors have their

positions.

Figure 5 – Process to obtain the series decompression

position.

Figure 6 – Process to obtain the parallel

decompression position.

3.6 Pre-processing procedure to NSP networks

The main objective is to transform the NSP network in

portions composed by SP networks. Fig. 2a shows one

example of NSP network that will be divided in SP

networks.

To do it, this procedure needs to identify all edges to

interconnect the terminal nodes, known as paths in graph

theory, and the common edges to all ways (named here as

common edges).

It identifies two types of way. A direct way is defined

as the path that has the minimal edges set generate a path

not using other edges of other direct paths, except for the

common edges. The bridge way was those not classified

and has least one edge not used by another direct way or

bridge way.

After, the procedure finds the relation between the

types of ways. Firstly, choose a bridge way and encounter

the most common sub way with a direct way (the largest

compartment of continuous edges). Then, the second most

common sub way to another direct way that doesn’t have

the edges of last comparison needs to be encountered. In

the bridge way, edges that were not contained by any

direct way will be considered as bridges.

Finally, each bridge is transformed as SP network

having terminal nodes (only two) defined as the vertex

contained with the direct way. The common edges are

reorganized as SP networks having as terminal nodes its

only two vertexes. Moreover, it divides the direct paths in

sub paths. The direct sub path is also transformed in SP

arrangement, considering its terminal nodes the vertexes

to the common edges or that are network terminal nodes.

The last step, it is compressed one more time all networks

to eliminate eventual series or parallel edges generated to

the network division. The result of the application of this

procedure in Fig. 2a network is showed in Fig. 7.

Figure 7 – Pre-processing task.

3.7 Using the components position procedure for NSP

networks

This application targets SP networks generated by

common edges or direct sub paths. Only the same

concepts introduced, by the series-parallel

decompression, is necessary in order to set each position

of the NSP network.

However, bridge arrangements need to wait until their

terminal nodes have information about their position to be

drawn. Moreover, bridging devices are drawn

perpendicularly, generating a swap in their length and

height.

4. RESULTS

The viewer prototype developed is able to represent

SP networks without transistors crossing, providing clear

illustration of series or parallel links, as showed in Fig. 8.

Moreover, it is also possible to represent planar NSP

networks that has the same degree (number of incidents

edges in a vertex) in Vdd/Gnd and output nodes, and do

not present a NSP network generated by a bridge, as

demonstrated in Fig. 9.

Java language has been utilized to develop this tool.

Because, this language allows the object orientation

method, important to offer an easy maintenance in the

tool, and provides the portability to different operating

systems.

Unfortunately, this algorithm cannot be compared

with others. Because, in all publications read, they do not

deal with drawing switch avoided any wire crossing. This

difficult was one of motivations to do this publication.

Figure 8 – SP network, NMOS pull down plane.

5. CONCLUSION

The positioning algorithm that draws SP networks and

NSP ones has been presented. This paper demonstrates a

solution to avoid switch crossing in SP networks and a

partial solution to avoid the same situation in planar NSP

network. A schematic viewer prototype is ready to use.

6. ACKNOWLEDGEMENTS

This work has been developed in cooperation with

Nangate Inc., including financial support.

Figure 9 – NSP network, NMOS pull down plane.

7. REFERENCES

[1] V. Callegaro, L. S. da Rosa Jr, A. I. Reis, R. P. Ribas,

“A Graph-Based Solution For Dual Transistor Network

Generation”, Student Forum on Microeletronics 2008

(SForum 2008), September 2008.

[2] D. Kagaris, T Haniotakis. A Methodology for

Transistor-Efficient Supergate Design. IEEE

Transactions on VLSI Systems, vol.15, n.4, pp. 488 – 492,

April 2007.

[3] L.S Jr. da Rosa; F.S Marques, F.Schneider, R.P.

Ribas,; A.I. Reis, A “Comparative Study of CMOS Gates

with Minimum Transistor Stacks”. Symposium on

Integrated Circuits and Systems Design 2007

(SBCCI’07), pp. 93 – 98.

[4] West, D. B. Introduction to graph theory, Prentice

Hall, Upper Saddle River, 2001.

[5] Weste, N.H.E. CMOS VLSI Design: A circuits and

Systems Perspective, Pearson Education Inc, 2005.

