
THE IMPORTANCE OF ESTABLISHING A METHODOLOGY FOR ANALYSIS OF AN
ALGORITHM BETWEEN ARCHITECTURES

SILVA, B. C. 1; LIMA, M. E. 1; TEICHRIEB, V. 1; CARVALHO, Q. G. da S2.
1 Federal University of Pernambuco, Computer Science Center, Cidade Universitária, 50740-540, Recife – PE, Brazil.

2 Esp. in security Work, resident of the 2oyear in specialty Hematology and Hemotherapy. SES-PE.

ABSTRACT

Lately, computer games provide highly sophisticated
features and therefore demand great computational
power, being comparable to some scientific processing
algorithms, well known as applications with a high
demanded computational performance. The scientific
community, perceiving the potential of the graphics cards
demanded by these games, that provided high
performance parallel vectorial processing, started to use
them for general purpose scientific calculations. CUDA is
a programming language similar to C language, with
some modifications that allow the elaboration of
algorithms in a simple way and with a good performance
in GPU. To analyze an architecture technology is a task
that requires a great bibliographic review. Create a
methodology and analyze an algorithm along various
architectures is important to decide which is the best
technology to run a specific program. This paper shows
the first steps taken in order to create such a
methodology, which initially will be used to compare the
CPU and GPU architectures when running a seismic
related algorithm.

1. INTRODUCTION

Lately, computational applications have been
demanding even more high performance processing. In
fact, these Requirements already existed, but they were
supplied by using mainframes, supercomputers or
computer clusters. High performance problems solution
is an area in the world-wide market supplied by
companies using technologies such as Cell, GPGPU
(General-Purpose computation on Graphics Processing
Units), cluster, among other architectures, with the
intention of offering the best solution, in the most diverse
application domains: financial analysis, data mining,
image processing, scientific computation, computational
modeling, etc.[1].

A way to disencumber this great demand for
processing in the CPU is to use a device that is common
good at the hands of the users of games, the graphic
cards. They have evolved and reached a high degree of
performance efficiency in the data processing task aiming
more complex games. Moreover, its cost is small if
compared to dedicated specialized systems for high
performance problems solving. Currently, GPUs are able
to keep the order of teraflops of processing, which is the
measure applied to high performance devices [2].

On the other hand, already for two decades the use of
programmable logical devices, such as FPGAs (Field
Programmable Gate Arrays), is consolidated for the

solution of problems through Prototyping. The use of
FPGAs is advantageous when the cost to manufacturing
the chip of a specific solution is not viable, or when the
product of the solution changes constantly compromising
financially the final value. In addition, they have being
used for HPC solutions mainly because of the low power
consumption what does not happen in the GPU case.
Beyond, they provide a significant performance
improvement due to some characteristics, such as its
intrinsic parallelism, larger bandwidth for memory access
and customization flexibility [3].

This paper describes a methodology for analysis of a
high performance algorithm. The algorithm models in 2D
problems related to seismic. The analysis will give
indications about the advantages and disadvantages of
executing the algorithm on a GPU (using CUDA
(Compute Unified Device Architecture) technology) and
a CPU.

2. METHODOLOGY

 In this section we describe the environment,
information collected for the benchmark, and show the
first steps of the methodology for analysis performance
and their calculations.

2.1 Development environment

The implementation of the algorithm and the
subsequent analysis have been made using a notebook
with Intel Core 2 Duo P8600 2.4G, Front Side BUS of
1066MHz, RAM DDR2 800 memory of 4GB, NVIDIA
GeForce 9800M GS graphics card with video memory of
1GB DDR3 VRAM. The operational system was
Windows Vista Home Premium of 32 bits with SP1, and
the Eclipse with MinGW GCC Compiler.

The algorithm, versions in C and CUDA, will be
developed and tested using the computer described
above. The programs will be tested in an idle Windows
Vista Home.

2.2 Benchmark

GPUs allow clock change in order to improve
efficiency in relation to the power used, or allow defining
its constant speed. In this project, the NVIDIA graphics
card offers the nTune and RivaTuner tools to correct the
clock.

In many graphics cards an overclock of 5% is already
enough to destabilize the equipment and not get any
gradual result in overclock. But, at this moment the intent
is not making an overclock but estimate performance, not

allowing that our test environment suffers alterations at
each test.

Notebooks provide the NVIDIA PowerMizer
Technology. This technology allows notebooks reducing
and increasing efficiency so that the battery is minimized
and drawn out for more time. Some CUDA examples
were executed, and using the programs GPU-Z
(performance measuring program specific for GPUs) and
Lavalys Everest (general performance measuring
program) none inferior clock limit was observed both on
the GPU and the CPU. Even being a notebook, the
computer used in this work (and described above) offers
all features found on a workstation.

The algorithm tackled in this paper uses a huge data
matrix, demanding a great amount of memory that
impacts its performance. So more closer the data stay
from block processing occurs less latency. Soon, the
amount of memory in the DEVICE influences the
algorithm performance and the architecture that will be
chosen for the solution.

To supply this requirement our system provides 4GB
of RAM in the CPU architecture, and 1GB of GDDR3
memory in the GPU one.

Our measure methodology performs efficiently when
dealing with algorithms that do not make use of the
interference of the user and pass most of the time
executing in the processor. This type of algorithm is
called CPU-bound [4].

The performance tests will be made in a CPU-bound
way. Therefore, after the exits of the algorithms are
validated the function will be annulled. Otherwise, we
would lose the characteristics of cpu-bound and could not
adequately perform the benchmark.

Clock counting is more precise than time counting. In
case a time counting is used, the result is given in
seconds, and if the processor varies the algorithm
performance result changes as well. Using a cycle of
clock counting approach limits this error, allowing the
generation of information for comparison purposes. In
order to perform such time measurement a simple
equation can be used that is valid both in the CPU and
GPU cases, with cycles of the divided clock frequency of
the processor we have an experimental value of time.
Follows the equation:

2.3 Methodology for performance analysis

Our algorithm generates two models in an iterative
and incremental way. Firstly, the algorithm was
implemented using the C language, and defined as the
reference algorithm. Its exit is considered standard, and is
reference for the CUDA algorithm exit.

After that, a CUDA version of the algorithm was
implemented and verified against the reference model in
C.

When translating the algorithm from the C based CPU
architecture to the CUDA architecture, some
modifications to the algorithm were necessary. This was
important in order to optimize the algorithm for running
on the GPU, taking advantage of its massive parallelism.

It is important to say that identify the bottlenecks of
the algorithm and know how to use wisely the
architecture in order to respect restrictions and take
advantage of its features is a process that requires a deep
understanding of the architecture and the algorithm, as
well as a profound bibliographic review.

2.4 Performance calculation

Each time the initial and final clock value is
calculated, it will be collected, respectively, the value of
the accountant before and after the execution of the main
process, and then they will be subtracted and the value
will be kept in a set. After a series of calculations an
analysis of these values is performed by computing its
median value. The median value has been adopted
because it shows a measure of central trend, in a way that
the chosen value separates in 50% the population above
and below it.

3. RESULTS

The results gotten through the use of the methodology
described in this paper are part of an undergraduate work
developed at the Computer Science Center of the Federal
University of Pernambuco.

It is expected that through this methodology an
effective experimental comparison between architectures
will be possible. In each architecture the algorithm will
show advantages and disadvantages, and the
methodology should help developers chose which
architecture fits better to the seismic problem.

In parallel to this work, another team is developing
an FPGA version of the algorithm tackled in this paper,
for later comparison. Therefore, not only a CPU and GPU
comparison will be possible, but an extension to a CPU
vs. GPU vs. FPGA comparison.

5. REFERENCES

[1] GPU Programming Guide GeForce 8 and 9 Series.
Available in:
http://developer.download.nvidia.com/GPU_Programmin
g_Guide/GPU_Programming_Guide_G80.pdf. Access in:
22/03/09.

[2] Nvidia closing in on 2 teraflops with graphics card.
Available in:
http://www.computerworld.com.au/article/272446/nvidia
_closing_2_teraflops_graphics_card. Access in: 13/04/09

[3] CORPORATION, NVIDIA CUDA. Programming
Guide 1.0. NVIDIA, 2007.

http://www.computerworld.com.au/article/272446/nvidia_closing_2_teraflops_graphics_card
http://www.computerworld.com.au/article/272446/nvidia_closing_2_teraflops_graphics_card
http://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide_G80.pdf
http://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide_G80.pdf

[4] Using the rdtsc instruction for performance
monitoring. Available in:
http://cs.smu.ca/~jamuir/rdtscpm1.pdf. Access in:
08/07/2008.

	Abstract

