
FPGA prototyping of an USB Host Controller

Hudson Veloso, Diego Melo, Renata Garcia, Marcelo Lucena, Antonyus Pyetro, Edna

Barros

Federal University of Pernambuco

ABSTRACT

This paper presents the FPGA prototyping of an USB

Host Controller IP-core developed in behavioral SystemC.

The IP-Core was designed using the Cynthesizer®

behavioral synthesis tool, provided by Forte Design

Systems. The USB Host Controller has been prototyped and

validated in the Stratix II based Altera® platform. This

platform contains a Nios II processor where runs a driver

developed to work with the USB HC and the µClinux OS.

1. INTRODUCTION

This paper presents the architecture of an USB Host

Controller IP-Core designed using behavioral synthesis

tools. How the architecture has been conceived at a high

level of abstraction and the problems during the prototyping

phase is the focus of this work.

The IP-Core has been specified in behavioral SystemC

and its functionalities have been verified in different

abstraction levels: behavioral, RTL and in FPGA. It was

also developed a driver supporting the communication

between the controller and the µClinux OS. The complete

system runs in an Altera® platform.

This paper is divided as follows: section 2 shows an

overview of the USB Host; section 3 explains the

architecture of the USB Host Controller and the modules

that compose it; section 4 explains the platform used for

prototyping the HC and how problems that emerged from a

physical level were resolved; section 5 presents some

results obtained; finally section 6 presents the conclusions

and future works.

RELATED WORKS

Due the complexity increase of the electronic devices

and the need to decrease the time design, the high-level

specification approach has been used as an alternative to

improve the design process. This approach is based on the

system specification through of a behavioral model and

communication structures in high-level abstraction.

A library for modelling of high-level communication is

proposed as a SystemC extension for providing the

modelling in high-level serial protocols, such as USB, CAN

and FireWire [11]. But the library is limited because it isn't

enough to define completely the architecture with the

control and data channel.

The behavioral specification must be converted to RTL

level that realizes the expected behavior [10]. For

performing this, there are some tools that generate

automatically the RTL code from the behavioral

specification. Besides this, it also is used to refine the

model, solving the most common design problems.

2. USB HOST OVERVIEW

The USB Host is the way that allows any system to

communicate with USB devices through the USB protocol.

It is composed by hardware and software. The hardware,

called Host Controller (HC), is a controller that provides the

mechanical and electrical interfaces to connection of

devices. It also implements a data channel to share data and

information among devices and others system peripherals.

The Host Controller Driver (HCD) is the software that

provides an abstraction, for the system higher level,

allowing access to the HC functionalities. The HC and the

HCD are based on the USB 2.0 specification [1] and on the

OpenHCI specification [4]. The complete USB System is

composed by layers, from the operating system to the

device, as shown in Figure 1.

Figure 1: USB Host layers

The HCD may exchange information with the HC using

Open Host Controller Interface (OHCI). The OHCI was the

interface chosen for this design, due to the fact that its

design that is more hardware oriented.

The HC communicates with the device through a

physical interface, or PHY. Its role is to take care of the

digital and modulated parts of the interface (encoding and

decoding). Figure 2 shows the logic view of the USB Host

architecture.

Figure 2: USB Host logic view

The MEM shown in Figure 2 is a shared memory used

to exchange information between the HC and HCD; this

memory is defined by the OpenHCI specification [4].

3. HC ARCHITECTURE

The HC is basically a data channel but, due to the

complexity and requirements of an USB Host Controller,

needs a control module. The modules from the HC can be

divided into two basic groups. One implements the Data

Channel and the other implements the System Control.

Each module has been verified separately before its

integration to the whole system. The Figure 3 shows an

overview of the main HC modules.

Figure 3: HC Architecture

The communication among the modules has been done

at pin-accurate and TLM level, using FIFO’s and buffers to

achieve the desired data flow rate and adjusting the latency

for synchronisation with the external clock source. In the

next two subsections it will be explained the architecture of

this modules and its functionalities.

3.1 Data Channel Modules

The Data Channel Modules is composed by Memory

Access Control, USB Transaction Manager, Root Hub and

ULPI Link. The details about them are exposed in the

following subsections.

3.1.1. Memory Access Control (MAC)

The MAC connects the memory to the others HC

internal modules through the use of modular interfaces and

pin-accurate interfaces.

The main function of MAC is to schedule the data

received from HC modules in order to control the memory

accesses.

3.1.2. USB Transaction Manager

The USB Transaction Manager module was divided in

two sub-modules: Prepare Transaction Control (PTC) and

Execute USB Transaction.

The PTC is responsible to check if the devices, that will

be served, are ready to communicate with the host. The

Execute USB Transaction is activated by the PTC when

exists a device ready to change information.

The algorithm is mainly concerned with the type of

packet transaction, which could be “SETUP”, “IN” or

“OUT” packets. It depends on the type of transaction

(“Control”, “Bulk” or “Interrupt”).

When a transaction ends, the USBT Controller must

update the system to reflect the last transaction performed.

This consists of updating the endpoint and transfer

descriptors of the OHCI specification.

3.1.3. Root Hub

The RootHub has responsibilities like monitoring the

Host Controller state, transmitting and receiving data from

the Host Controller core to the downstream ports and

transmitting StartOfFrame (SOF). It has the knowledge of

inter packet transaction sequences to set up its counters to

signal the correct timing requirements of the ULPI

Specification.

3.1.4. ULPI Link and the PHY

The ULPI Link Module and the physical interface, or

PHY (USB 3300 from SMSC® [7]), are based on the ULPI

specification [3]. The ULPI is a low-pin interface version of

the UTMI+ specification [2].

The ULPI Link receives processes and informs other

modules from events such as device connection or

disconnection; device reset completion, transmission or

reception errors and accomplishments among others USB

operations.

3.2 System Control Modules

The Operational Registers module is a register bank that

stores information about the status and configuration of the

HC and its transmissions.

The HCD uses the Operational Registers to configure

and control the HC by writing the registers.

The USB State Controller takes care of the USB states

transition. The USB specification defines four possible

states for the HC: “USBSuspend”, “USBResume”,

“USBOperational” and “USBReset”.

The Frame Management (FM) takes care of the USB

host controller and accomplishes the timing requirements

specified in [1].

The Interrupt Trigger module is in charge of informing

to the HCD that a transaction has been accomplished.

4. PLATFORM AND PROTOTYPING

The HC IP-core has been prototyped on a Stratix II

EP2S60F672 FPGA [6] and integrated in a platform, using

the Quartus II and SOPC Builder [9]. The final platform

includes a memory, the NIOS II processor (used to run the

OS), the USB Host Controller and the Avalon bus [8], to

interconnect all the components.

Figure 4 shows the components and connections that

compose the platform.

Figure 4: Platform for the USB Host

The HCCA is a shared memory used to exchange

information between HC (hardware) and the HCD

(software) modules. The HCD is running in the NIOS

processor. The memory area is allocated by the HCD at the

initialization and its address is stored in one of the HC

registers, usually the HCCA stores information about the

transmissions status.

 The following sections talk about the problems found in

this phase. They were related to the synchronization

between the interfaces HC/PHY and HC/Nios II processor.

4.1 HC Two Clock Domain

The Nios II processor operates at a maximum clock of

50 MHz, but the PHY generates a 60 MHz clock. To solve

this problem, a PLL has been used to correct the clock

phase delay and generates a 30 MHz clock. The reason for

this is the multiplicity behind the numbers 60 and 30

allowing a correspondence in the number of cycles, 2:1.

The MAC and Operational Register have a HC interface

that receives 60MHz and an Avalon Bus interface that

receives 30MHz of clock. This solution allowed that the

NIOS II and the Avalon Bus could operate at 30 MHz and

was able to communicate with the HC operating at 60 MHz.

4.2 PHY and HC Synchronisation (Clock Phase

Adjustment)

This PLL adjusts the duty cycle to 50% and advances

the phase. That clock adjustment compensates the delay of

the communication between HC and the PHY and allows

the prototyped HC to write the “STP” and “DATA” (out

direction) signals to the PHY in the required timing.

However this clock adjustment has introduced a

negative effect in the incoming communications that would

not need any compensation. The use of high-level directives

of input and output delay in the ULPI Link’s ports

introduce a delay to read the input signals balancing,

therefore, the action of the clock phase advancing. Figure 5

shows how the PLL is connected to the platform.

Figure 5: PLL interconnecting PHY and HC

5. RESULTS

The result of this work is an USB Host IP-core

prototyped in FPGA occupying 54% of the total area and

the HC occupying 48%. The HC data channel has been

verified and validated through the sending and receiving of

data packages. In our test cases the USB Host recognizes a

pen-drive, reset it and requests information about its

configuration; validating the communication with the

device.

Table 1 shows some implementation and prototyping

numbers that shows the complexity of the designed USB

Host IP-core.

Results

Requirements 147

Architecture 12 modules

Source Code 9158 code lines

Test-bench 16400 code lines

Prototyping 20599 ALUS

Table 1: USB Design results

Concerning functional verification, the test vectors

cover two implemented transmission types: Bulk and

Control transmission.

Table 2 shows the number of source code lines of the

HC in different abstraction levels: behavioural SystemC

and SystemC RTL. It shows the programming effort

difference between these two abstractions levels.

Level Code Lines

Behavioral SystemC 9158

RTL SystemC 81066

Table 2: Code Lines

Table 3 shows the simulation time spent to accomplish

two protocols tests, each one executing all the channel tests

in different abstraction levels: behavioral and RTL. It

shows that the behavioural simulation time is about 50%

shorter than the RTL simulation Time.

Protocol Test Behavioral Verilog

ACK 53m54s 110m26s

TIMEOUT 3 69m23s 143m0s

Table 3: Simulation Time

The test named ACK is the ideal flow protocol test,

where the HC receives only ACK tokens; this test is the

fastest protocol test. Timeout 3 is the test where the

Timeout token is issued three times in the same

transmission; this is the slowest test. The tests have been

performed in a machine including an AMD Sempron(tm)

Processor +2800, 1GByte with CentOS Operating System.

6. CONCLUSION AND FUTURE WORK

The advantages in using a behavioral description in the

project of digital systems, principally for complex projects

like the USB Host Controller, justify its adoption. The

reduction in time of development and simulation allows

architecture exploration and rapid prototyping, increasing

the designer productivity.

During the prototyping phase occurred some problems

how the two clock domains and the de-syncronisation

between the electrical interface and FPGA. They were

resolved by the introduction of high-level directives during

the synthesis and adjusting clock phase using a PLL.

With the validated IP-Core in FGPA, the next work

consists of generating the layout of the USB Host

Controller with the objective to validate the IP-core as

ASIC.

REFERENCES

[1] COMPAQ; HEWLETT-PACKARD; INTEL; LUCENT;

MICROSOFT; NECK; PHILIPS. Universal Serial Bus

Specification. Revision 2.0. April, 2000. URL:

http://www.usb.org/developers/docs/

[2] UTMI+ Specification, Revision 1.0. URL:

http://www.smsc.com/main/catalog/ulpi.html

[3] UTMI+ Low Pin Interface (ULPI) Specification, Revision 1.1.

URL: http://www.smsc.com/main/catalog/ulpi.html

[4] COMPAQ; MICROSOFT; NATIONAL SEMICONDUCTOR.

OpenHCI – Open Host Controller Specification for USB. Release:

1.0a September, 1999 URL:

ftp://ftp.compaq.com/pub/supportinformation/papers/hcir1_0a.pdf

[5] Brazil-IP Network. Brazilian network for the design of digital

systems and IP-Cores.

URL: http://www.brazilip.org.br/

[6] ALTERA. Stratix II Handbook, Volume 1 and 2. May, 2007.

URL: http://www.altera.com/literature/lit-stx2.jsp

[7] SMSC® USB3300 Datasheet – Hi-Speed USB Host, Device or

OTG PHY with ULPI Low Pin Interface, Revision 1.08, July 11,

2007.

URL: http://www.smsc.com/main/datasheets/3300.pdf

[8] Avalon Interface Specification, Version 1.0. May, 2005 –

Altera.

[9] ALTERA. Quartus II Version 7.2 Handbook, Volume 4.

October, 2007.

URL: http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf

[10] Siegmund, Robert; Mueller, Dietmar – Automatic Synthesis

of Communication Controller Hardware from Protocol

Specifications -

http://ieeexplore.ieee.org/iel5/54/21911/01018137.pdf?tp=&isnum

ber=&arnumber=1018137

[11] McFarland, Michael C.; Parker, Alice C.; Camposano, Raul -

The High-Level Sysnthesis of Digital Systems – URL:

http://ieeexplore.ieee.org/iel1/5/1878/00052214.pdf?tp=&isnumbe

r=&arnumber=52214

