
VISUALIZING HDL CODE EVOLUTION

Thiago S. F. Silva 1, André S. F. Silva 1, José Augusto Nacif 1,2

Luiz F. M. Vieira 1, Antônio O. Fernandes 1

1 Computer Science Department, Universidade Federal de Minas Gerais
2 Universidade Federal de Viçosa

{thiagosf,andresfs,jnacif,lfvieira,otavio}@dcc.ufmg.br

ABSTRACT

Verifying industrial scale designs is a challenging task

that consumes a lot of development efforts. In order to han-

dle this increasing design complexity, improvements in cur-

rent verification methodologies are needed. A great con-

tribution to digital integrated circuits development is the

possibility to visualize HDL code evolution. In software

engineering, code evolution visualization is a well known

practice. In that area, there are many researches that

present visualization methodologies and illustrate source

code metrics through a timeline. We propose visualization

mechanisms to facilitate the HDL code evolution analysis.

Collecting data from versioning systems and error reports

makes it possible to extract design improvements informa-

tion and print bug reports. This problem is challenging be-

cause we are dealing with large data volume, about all de-

sign stages. In order to support HDL code evolution, we

present visualization methodologies that will contribute for

a better productivity on hardware projects.

1. INTRODUCTION

The design and verification stages are complex tasks

during the development process of digital integrated cir-

cuits. As new VLSI technologies arrive at market, more

complex chips are developed. In order to handle this com-

plexity growth, it is also needed to increase hardware engi-

neering teams productivity.

The source code evolution analysis term comes from

software engineering. Through versioning control systems

(VCS) and documented error reports from bug tracking sys-

tems (BTS), data about all software design steps are stored.

The great volume of data is relevant to many research top-

ics. On Software Engineering area, data extraction mech-

anisms and visualization methodologies were presented in

order to facilitate inferences about development processes.

With the support of these tools, different software aspects

can be analyzed.

The technology needed to track hardware evolution in-

formation, based on revision history is the same used for

software evolution. Despite this, collecting hardware spe-

cific metrics needs modifications. On hardware engineering

research, the term hardware evolution is not used yet. How-

ever the analysis of these data has shown capable to offer

a great potential to be explored [1]. In order to support

HDL code evolution, we present visualization methodolo-

gies that will contribute for a better productivity on hard-

ware projects.

This paper is outlined as follows. Section 2 describes

related work on tracking software evolution and its visual-

ization mechanisms. In Section 3, we present aspects to be

analyzed about hardware evolution. Section 4 shows evolu-

tionary visualization mechanisms. Finally, Section 5 con-

cludes the paper.

2. RELATED WORK

There is a well known research area on Software En-

gineering that studies evolution analysis of source code.

Tools, metrics, and visualization methodologies were found

on recent researches [2]. The major motivation of this study

area are the improvements on development processes. It is

expected that through historic analysis, it will be possible

to estimate, predict, or just known specific details about a

developed object.

Popular papers on software evolution are CVSAnalY [3]

and RHDB [4]. The former presents different analysis that

can be done only from VCS data. In order to build a release

history database (RHDB), the latter joined bug collected

from BTS with VCS data, establishing links between modi-

fication reports from VCS, with problem reports from BTS.

To track code structures evolution, this structures were stat-

ically retrieved from source code by a parser.

Another software source code static analysis tool was

combined with VCS mining on [5]. On their case study, ev-

ery registered modification on analyzed softwares were re-

trieved, and error metrics were statically extracted for each

one.

The most complete tools found to track software evolu-

tion are Alitheia [6] and Kenyon [7]. They provide connec-

tors to most common VCS and BTS tools, software met-

rics, and perform all data extraction. The collected data are

stored on a database for future analysis.

Only to present evolution data, there is a specific re-

search area. There are many papers that deals with the most

different aspects that can be observed, since the modifica-



tions occurring at each code segment or structure, until spe-

cific statistic data, collected during the timeline.

RelVis [8] is an approach that presents Kiviat diagram,

also known as radar chart, as a good mechanism to show

multiple metrics. They also used multiple charts linked by

edges representing couple among software modules.

Voinea presents a different approach, showing evolution

inside code structures. CVSgrab and CVSscan [9] were

built to extract data and present code change history.

3. ASPECTS TO BE ANALYZED

In general, any development aspect could be analyzed,

resulting in qualitative information, based on quantitative

metrics. As quantitative metrics, we present data extracted

from static analysis of HDL code (3.1), versioning control

systems (3.2), and error reports (3.3).

3.1. HDL code static analysis

The static analysis from HDL code differs from dynamic

analysis because there is no simulation, only code struc-

tures are observed. Complexity data extracted from HDL

statically are metrics like: lines of code (LoC), number

of I/O signals, operands, operators, logic gates, and flip-

flop/latch registers. There are also metrics used in software

engineering like ciclomatic complexity [10] and number of

acyclic paths [11].

The visualization of complexity metrics changing in

time is useful for developers that want to follow their de-

velopment processes. Metrics extracted in a timeline can

be correlated with error report data. The analysis of val-

ues varying may point quality aspects and help on inference

learning.

3.2. Versioning control tools

Versioning control systems make possible to work on all

HDL code evolution perspectives. Usually, the data are or-

ganized by time, according with commit sequence. Each

commit represents a new source version because one or

more files were modified by a developer. Data about which

files were modified, who did the modifications, and commit

messages are stored.

When there is a commit sequence about the same mod-

ification context, it is possible to group them and label as

the same transaction. So, it is possible to change the vi-

sualization perspective from commit by commit to commit

per modification motivation. The commit data can also be

grouped by developer.

3.3. Error reports

Versioning control systems can be used with error docu-

mentation tools, known as bug tracking systems. They store

important statistics about modifications and errors found,

that can be correlated with HDL versions. Data about which

error classifications, when they were resolved, and who

were the involved developers are obtained from these tools.

Since it is common to development teams spend great

part of their efforts on verification step, only error informa-

tion is interesting to be observed.

4. RESULTS

The visualization of HDL code evolving in time is done

by simple charts as bar, line and pie. We have also found in

software engineering research, works presenting intercon-

nected geometric forms like graphs, representing connec-

tions among code structures [12]. Another interesting chart

is the heatmap that represent proportion and intensity.

The metric evolution chart, illustrated by Figure 1

presents multiple metric values changing as new HDL ver-

sions are being committed. On Figure 2 the radar chart also

presents multiple metric perspective, but with a fragmented

timeline. The latter is good to show the variation of multi-

ple metrics at specific time intervals.

��������	A���BCDEF������BD��

����������	���A�BC��D E�FB�	AB�	����BF� �BD����� �AB��F�� E�FB�	��	���B

� � � � � � � � � � �� �� �� �� �� �� �� �� �� � �� �� �� �� �� ��

�������

 ! 

 !�

 !�

 !�

 !�

 !�

 !�

 !�

 !�

 !�

�! 

"
B
��
��
	#
�
�$
B
�

Figure 1. Metric evolution chart

���������	 ��������AB

��CD��E��C

���FD�����

�CC���DE���

������������

���

��������	A�BCDEF���������C������������

��������A�

Figure 2. Radar chart

Collected errors from BTS tools are illustrated by the bar

chart on Figure 3. The errors were grouped bi-weekly.

The heatmap chart, illustrated by Figure 4 depicts an in-

tellectual property core with 17 modules. The rectangle

area is used to represent measures that can be presented

proportionally. The colors are used to distinguish aspects



���������	ABBCBD	ECF��

� � � � � � � �

�������

�

�

�

�

�

��

��

��

��

��

�
�
�
	
�
A

�

��

� �

�
�

�

��

Figure 3. Bugs in time

about each object. On this example, we represent LoC size

and use dark gray for the three most frequently fixed mod-

ules.

Figure 4. Heatmap chart

5. CONCLUSION AND FUTURE WORK

The visualization of hardware evolution statistics can

widely collaborate on HDL design and verification stages.

We presented the relevance of using VCS and BTS tools,

that store historical data about all design process. We have

also shown charts illustrating metrics evolving on time, er-

rors reported on BTS and a heatmap that could point desired

aspects about a designed IP core.

As future work we intend to design and implement a tool

capable of automatically tracking VCS and BTS data. The

collected data should be stored on a database. It is also

interesting to facilitate chart generation.

6. REFERENCES

[1] J. Nacif, T. Silva, A. Tavares, A. Fernandes, and

C. Coelho, “Efficient allocation of verification re-

sources using revision history information,” in Pro-
ceedings of the 2008 11th IEEE Workshop on Design

and Diagnostics of Electronic Circuits and Systems,

pp. 1–5, IEEE Computer Society, 2008.

[2] G. Gousios, Tools and Methods for Large Scale Soft-

ware Engineering Research. PhD thesis, Athens Uni-

versity of Economics and Business, jul 2009.

[3] G. Robles, S. Koch, and J. M. Gonzalez-Barahona,

“Remote analysis and measurement of libre software

systems by means of the CVSAnalY tool,” in Pro-

ceedings of the 2nd ICSE Workshop on Remote Anal-

ysis and Measurement of Software Systems (RAMSS),

(Edinburg, Scotland, UK), 2004.

[4] M. Fischer, M. Pinzger, and H. Gall, “Analyzing

and relating bug report data for feature tracking,” in

WCRE ’03: Proceedings of the 10th Working Con-

ference on Reverse Engineering, (Washington, DC,

USA), p. 90, IEEE Computer Society, 2003.

[5] C. Williams and J. Hollingsworth, “Automatic min-

ing of source code repositories to improve bug find-

ing techniques,” IEEE Transactions on Software En-

gineering, vol. 31, no. 6, pp. 466–480, 2005.

[6] G. Gousios and D. Spinellis, “Alitheia core: An exten-

sible software quality monitoring platform,” Software

Engineering, International Conference on, vol. 0,

pp. 579–582, 2009.

[7] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. God-

frey, “Facilitating software evolution research with

kenyon,” in ESEC/FSE-13: Proceedings of the

10th European software engineering conference held

jointly with 13th ACM SIGSOFT international sympo-

sium on Foundations of software engineering, (New

York, NY, USA), pp. 177–186, ACM, 2005.

[8] M. Pinzger, H. Gall, M. Fischer, and M. Lanza, “Visu-

alizing multiple evolution metrics,” in Proceedings of

the 2005 ACM symposium on Software visualization,

pp. 67–75, ACM, 2005.

[9] L. Voinea, A. Telea, and J. van Wijk, “CVSscan:

visualization of code evolution,” in Proceedings of

the 2005 ACM symposium on Software visualization,

pp. 47–56, ACM, 2005.

[10] T. J. McCabe, “A complexity measure,” in ICSE

’76: Proceedings of the 2nd international conference

on Software engineering, (Los Alamitos, CA, USA),

p. 407, IEEE Computer Society Press, 1976.

[11] B. A. Nejmeh, “Npath: a measure of execution path

complexity and its applications,” Commun. ACM,

vol. 31, no. 2, pp. 188–200, 1988.

[12] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and

K. Wampler, “A system for graph-based visualiza-

tion of the evolution of software,” in Proceedings of

the 2003 ACM symposium on Software visualization,

ACM, 2003.


