
DEVELOPMENT OF A SOFTWARE MODEL FOR AN H.264/AVC PROGRESSIVE

MAIN PROFILE HARDWARE VIDEO DECODER

Alonso A. Schmidt, Fábio F. Vidor, Márlon A. Lorencetti, Altamiro A. Susin

Universidade Federal do Rio Grande do Sul

ABSTRACT

This work presents a model software for the

development of an H.264/AVC hardware decoder. The

software is capable of decoding progressive video

bitstreams up to the main profile. Also, it is able to

generate test vectors to aid the validation of the FPGA

prototypes. Furthermore, the software was employed for

study of the complex video coding standard. During the

development of this software, the group could learn about

simple ways of implementing the H.264/AVC features,

which could help the design of efficient hardware

solutions, since the software allows the designer to know

the interfaces and performance requirements. Some tests

were performed to check for possible optimizations. The

modular structure of the software, resembling a hardware

implementation, has been proved more practical than the

use of JM software for validation purposes.

1. INTRODUCTION

This work is part of the Rede H.264 project [1] for the

development of the SBTVD (Sistema Brasileiro de

Televisão Digital) [2], which has as main objective to

develop an FPGA prototype of an H.264/AVC video

decoder that will be later implemented into ASIC

technology. It presents the continued development of a

reference software [3,4] for validation and modeling of an

H.264/AVC video decoder.

Aiming higher compression, the H.264 standard was

developed, including several novelties such as adaptive

entropy coding and intra frame prediction, which presents

greater computational complexity. Such complexity

makes the development of hardware more suitable to be

done in an incremental approach, where each module is

designed separately, concerning only about previously

defined interface signals for later integration in the whole

decoder. To support the hardware development, a

modeling software, called PRH.264 [3], was created to

acquire knowledge about the algorithms involved in the

decoding process and which interface and signals would

be necessary in the development. This program is also

able to extract intermediary data from the decoding

process which can be used as test vectors to later validate

the hardware.

The software development has begun from a source

code with the most essential features of the H.264/AVC

standard, covering only a subset of the baseline profile,

without in-loop deblocking filter, multiple reference

pictures for motion compensation, and multiple slices

support. These missing features were gradually

implemented into the software until it was capable of

decoding progressive video coded with main profile

features.

The techniques used for achieving high compression

in the main profile are presented in the section 2. In

section 3, the algorithms written to implement these

features are broadly discussed, as well as the validation

with the JM Reference Software [5]. Section 4 presents

dynamic program analysis made with different video

bitstreams generated by JM software and the

identification of the processes with the higher

computational costs. In section 5, it is presented what

could be learned with the model and the results.

2. H.264/AVC MAIN PROFILE FEATURES

In the H.264/AVC standard, images (frames or fields)

are separated into one or more slices. Each slice is

divided into 16x16 pixel samples regions called

macroblocks, which are decoded one by one. Pixel

samples can be represented as a composition of prediction

and residual information. For the process of macroblock

decoding, some information regarding its prediction mode

is acquired by the entropy decoder and supplied to one of

the predictors block. There are two types of prediction:

spatial and temporal. The prediction modes can be

denoted by macroblock types: I, P or B. I macroblocks

use intra (spatial) prediction; P and B macroblocks uses

inter (temporal) prediction. In a P slice, there can be P-

type or I-type macroblocks only. In a B slice, there can be

B-type or I-type only macroblocks. In an I slice there can

be only I-type macroblocks. A residual that first passes

through a process of inverse quantization and inverse

transform is added to the macroblock predicted samples.

After the whole image has been decoded, it is processed

by an adaptive filter to smooth the blocks edges. A

simplified block diagram of the decoder is shown in

figure 1.

These video coding tools depend on the bitstream

profile [6]. In the SBTVD [2], the transmission can be

coded in baseline, main or high profile. In the following

subsections, the most important features of the main

profile are briefly described.

2.1. Reference picture lists management

Before the start of the decoding process of each slice,

depending whether the slice is P or B, up to two reference

lists are initialized addressing the pictures stored in the

Decoded Picture Buffer (DPB). The DPB

Fig. 1 - Simplified H.264/AVC decoder diagram [7]

has a limited space, depending on the level or on the

maximum number of pictures stored, that is 16 pictures

(16 frames or 32 fields), e.g.: for the level 4 (highest level

in high profile at SBTVD) the pictures are limited by the

total space of the buffer, so there are 4 reference pictures

in the DPB and for the baseline, the pictures are limited

by the maximum number of pictures (16), even if the

space allows 24 reference pictures.

For the B-slices there are two lists, initially ordered by

the Picture Order Count (POC), in the way that one list

gives preference to the past pictures and the other to the

future pictures in the display order. Since P-slices just

have past reference pictures there is just one reference

picture list initially ordered by the Picture Number

(PicNum), one especial case of POC.

2.2. Intra prediction

The intra prediction mode is one of the novelties

introduced into video coding by the H.264/AVC standard.

Its algorithm explores the spatial redundancy of the

image, where a block can be predicted from previously

decoded blocks. Each predicted sample can be generated

using a directional copy of border samples of the

neighbor blocks. Such a directional copy can be as simple

as a replication, the mean value of the border samples, or

an N-tap filter of border samples.

For the luminance samples of a macroblock, the

prediction can be performed over the entire macroblock,

i.e. 16x16 samples, or in blocks of 4x4 samples. In the

case of 4x4 block intra prediction, there are up to 9

possible prediction modes. For the 16x16 block intra

prediction, up to 4 prediction modes are available. For the

chrominance samples, the intra prediction modes are

equivalent to those used for blocks of 16x16 luminance

samples. The number prediction modes can be reduced

according to the availability of neighbor samples.

2.3. Inter prediction

For the temporal (inter) prediction, the macroblocks

can be divided into smaller partitions which can be 2

16x8, 2 8x16 or 4 8x8 luminance samples. The 8x8

partitions, on its turn, can be subdivided into subpartitions

of 4x8, 8x4 or 4x4 samples. For each partition there

might be up to two reference pictures for motion

compensation. The motion compensation however is done

at subpartition level, which can be down to 4x4 pixels,

using a motion vector given for each reference picture of

the current partition. Each partition has a corresponding

one at the same position in the first list 1 reference

picture, which is called the co-located partition.

The prediction of the motion vectors is done

depending on the macroblock type, but the predicted

motion vector is basically the median of the neighbors’

partitions motion's vector already derived. The neighbors’

partitions are the left one, the top one and the upper-right

one, as shown in figure 2. If C partition is unavailable, D

is used. There are, however, some particularities which

makes the process more detailed such as motion vectors

of partitions with different reference picture for motion

compensation. The prediction is done for each reference

picture used for the motion compensation of the partition,

which can be up to two in a B-type macroblock.

In B type macroblocks, there is a direct prediction

mode, for which no motion vector difference is

transmitted. There are two types of direct prediction:

spatial direct prediction and temporal direct prediction.

For both direct prediction types, information about the co-

located partition in the first list 1 reference picture is

requested.

In the spatial direct prediction, if the co-located

partition has a motion vector that is less than 1/2

luminance samples in magnitude, one or both list 0

picture and list 1 picture predicted motion vectors are set

to zero. Otherwise, the predicted motion vector is derived

as in normal prediction from the neighborhood.

In the temporal direct prediction, the list 0 picture and

list 1 picture motion vector are derived as a scaled copy

of the co-located partition motion vector. The list 0

picture motion vector of the predicted partition is the

same as the co-located partition list 0 picture previously

used for prediction, and the list 1 picture motion vector of

the predicted partition is the first list 1 reference picture.

The weighting factors for scaling each predicted motion

vector are determined from the temporal distance of the

pictures used for prediction and the current picture.

2.4. Context-based Adaptive Arithmetic Coding

The Context-based Adaptive Arithmetic Coding

(CABAC) method is based on probability models for each

D B C

A
Current

Partition

Fig. 2 - Current partition neighborhood

syntactic element. A probability model is updated while

coding syntactic elements, keeping local statistics.

CABAC uses arithmetic coding with only two possible

intervals, referred as MPS (most probable symbol) and

LPS. Probability states store the value of the most

probable symbol and its probability. Since the arithmetic

engine deals only with two possible intervals, each data

symbol must be binarized to encode only 0 and 1

decisions (bins).

The context model used for decoding each bin is

derived based on previously decoded bins and syntactic

elements.

2.5. Interlaced video coding

The H.264/AVC standard also supports interlaced

video coding. This can be set either by coding entire

slices as top or bottom fields, or at macroblock level in an

adaptive frame. In an adaptive frame, the slice is

processed in units of 16x32 luminance samples

considered as macroblock pairs. The macroblock pairs

can be coded either as two frames or two fields.

Interlaced coding features affects every block of the

decoder, with several implications in the direct motion

vector prediction and reference lists management. At the

moment, the support for interlaced video is being studied

by the group and has not been yet fully implemented in

the software.

3. SOFTWARE IMPLEMENTATION

The main goal of the software was not to achieve the

highest performance running on a PC, but to serve as a

model for study, tests and validation of the hardware.

Therefore, it was implemented with a separate source

code file in an one to one correspondence to each of the

hardware decoder modules. [4]

3.1. Code structure and algorithms

For global decoder control, there are structures that

store and organize decoding information, e.g.: parameter

sets, decoded samples, prediction modes of each

macroblock, etc. The functions responsible for setting the

decoding flow are described in a rather high abstraction

level, in a way that function calls would be equivalent to

enabling and feeding data into hardware modules.

The reference picture list is composed by pointers to

where the pictures are in the DPB, since it is more

efficient to deal with vectors of pointers. There are

mechanisms to reorder the list, so the access to the

desired pictures can be optimized. There are processes to

mark the pictures (unused or used for reference) in a

custom way.

For the inter prediction, memory should be allocated

to store two motion vectors per 4x4 block of the image,

regardless of macroblocks partitioning. Functions were

created to predict the motion vectors of the subpartitions

and predict the 4x4 blocks.

For the CABAC entropy decoder, there is a function

to decode each syntactic element. The function calls gets

the context model, perform the syntactic element anti-

binarization and calls the arithmetic engine functions to

decode the bins until a valid syntactic element value is

obtained.

3.2. Validation tools

PRH.264 has a graphic user interface that allows the

user to enable the debug tool for each module. While

executing, the program checks for each option enabled

and stores in a separate file intermediary data from the

decoding process. These tools can be used to locate exact

eventual mismatch points while comparing its outputs

with data generated by the hardware decoder. Some tools

were also used to validate the software itself.

For the inter prediction the program prints predicted

motion vectors and motion vector difference obtained by

the entropy decoder, reference pictures indexes, and each

macroblocks predicted luminance and chrominance

samples.

For intra prediction, PRH.264 prints into a text file the

syntactic elements that determine the prediction mode, the

macroblock address and the index of the 4x4 block inside

the macroblock, when this type of prediction is used. The

predicted samples of luma and chroma are also written in

a text file for further analysis.

A modified version of the JM reference software 15.0

[5] was used for debug and validation of the CABAC

entropy decoder written in C. The trace functionality in

JM, was increased to give information about the decoding

of each bin in the decoding process flow in the normal

trace file and in a new file. This improved trace

functionality was also implemented in PRH.264. Thus,

the values of binary arithmetic engine interval range,

interval offset and probability state could be compared.

Using a file comparison tool, to get the first difference

between PRH.264 trace file and the CABAC JM trace

file, and searching where it occurs in the normal trace file,

informed the frame number, macroblock address and

syntactic element that was being decoded. This feature

can be used to validate the hardware in a functional

simulation.

4. RESULTS AND ANALYSIS

In order to extract relevant data from the model, the

software was built to profile the code. A set of different

H.264 bitstreams were encoded with JM reference

software, configuring it to use the features present in the

main profile.

Fig. 3 - Dynamic analysis pie-chart

4.1. Dynamic analysis with video bitstreams

The video bitstreams were all generated with B slice

inter prediction and CABAC. One video bitstream

extracted from broadcasting which implemented only

baseline features was also decoded. The results of frame-

rate achieved by decoding them with PRH.264 in a PC

Core 2 Duo E8400 3.0 GHz 4GB RAM DDR 800 are

shown in the table 1.

Bitstream Resolution
Frame

rate
Length

Akyio 176x144 400 fps 150 frames

Bus 352x288 70 fps 150 frames

Parkrun 1280x720 7 fps 90 frames

Broadcast

baseline
320x192 183 fps

>1000

frames

Tab. 1 - Frame rate results

The gprof tool was used to generate statistical data

about the processing time spent in each function of the

software while decoding the video bitstreams, achieving

similar outputs. The results for the "bus" sequence are

shown in the pie-chart of figure 3. From these functions,

the time necessary to perform the most demanding

decoding processes can be estimated and the module to

which it applies can be identified.

The pie-chart shows that the deblocking filter

demands higher processing time (approximately 42%),

and functions related with motion compensation used to

predict a single 4x4 block of the image (independently of

the partitioning) and other used to get a 9x9 luminance

sample for pixel interpolation, comes second with

(approximately 33 %). Other functions like intra

prediction, headers decoding with lesser execution times

are related with 6.4 %

As a case of analysis, with a possible optimization of

reducing the total execution time of functions related to

the deblocking filter and motion compensation by half the

total time needed to decode the video bitstreams would be

reduced to approximately 70 %.

4.2. Identification of hardware design challenges

The most time-consuming processes in the software

model were identified to be where a large amount of

calculations with previously stored data must occur.

Therefore, in these blocks, the hardware design should be

optimized aiming at executing several operations in

parallel. Also, the memory access should be carefully

designed, considering the feasibility of implementing

cache.

5. CONCLUSIONS AND FUTURE WORKS

Software modeling for systems design is a good

approach when dealing with high complexity applications

as H.264/AVC video decoding. Despite not giving an

exact correspondence of the hardware behavior due to the

fundamental difference in the methods of reaching high

performance, a software model was successful to help the

group to learn about the general decoder functioning.

Also, the software was successfully used to generate test

vectors to validate the modules of an intra-only FullHD

hardware video decoder prototype.

As future work, the implementation that is being done

in order do deal with interlaced video should be

completed and tested. Then a few adaptations should be

made for the software to decode video bitstreams at high

profile. After the completion of these tasks, the software

has to be validated with broadcasting videos in high

definition. The final version of PRH.264 will be used to

generate test vectors and validate the hardware decoder.

6. REFERENCES

[1] “Rede H.264 SBTVD Wiki”,

www.lapsi.eletro.ufrgs.br/h264/wiki/, 2010.

[2] “Televisão Digital Terrestre – Codificação de video, audio e

multiplexação”, ABNT, Rio de Janeiro-RJ, 2007.

[3] M.A Lorencetti, W.T. Staehler and A.A. Susin, “Reference

C Software H.264/AVC Decoder for Hardware Debug and

Validation”, XXIII South Symposium on Microelectronics,

SBC, Bento Gonçalves-RS, pp 127-130, 2008.

[4] M.A. Lorencetti, W.T. Staehler, A.A. Susin, “Incremental

Hardware Development from Modular Mixed C-VHDL

Simulation”, 8th Students Forum on Microelectronics

SForum’08, Gramado-RS, 2008.

[5] “H.264 Reference Software”,

http://iphom.hhi.de/suehring/tml/, 2010.

[6] Video Coding Experts Group, “ITU-T Recommendation

H.264 (03/05): Advanced video coding for generic audiovisual

services”, International Telecommunication Union, 2005.

[7] I.E.G. Richardson, “H.264 and MPEG-4 Video

Compression: Video Coding for the Next-generation

Multimedia”, John Wiley and Sons, England, 2003.

