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ABSTRACT 

Error-correcting codes are present in basically all 

modern data communications and data storage systems. 

When top-performance is required, the corresponding 

algorithms (encoder + decoder) are implemented in 

hardware. This paper describes a VLSI implementation 

for an information-set-based error correcting decoder. 

More specifically, we present the modified Gauss-Jordan 

elimination block, which constitutes the main block of 

the ongoing work on the complete soft information-set 

decoder. The motivation for this work is that such 

decoder can achieve near-MLD performance with fewer 

computations, but no VLSI implementation has been 

developed for it yet.  

1. INTRODUCTION 

Error-correcting codes are a common method to 

increase reliability in data transmission and storage 

operations. By properly encoding the information, errors 

induced by a noisy channel or medium can be reduced to 

any desired level [1]. This is made possible by the 

addition of extra bits, called redundancy bits or parity 

bits, so the number of bits at the encoder outputs (n) is 

always higher than at its inputs (k) [2]. 

Figure 1 illustrates the use of an error-correcting code 

in data transmission [2]. Initially, the original message 

(u) is encoded, resulting in a codeword (c) with more 

bits. After the data is transmitted through a noisy channel, 

the received message (c*) may be corrupted, but it can be 

reconstituted if the errors introduced are within the code‟s 

correction capability. In Figure 1, an original message 

with k = 6 bits was encoded into a codeword with n = 9 

bits, of which the 3
rd

 bit was corrupted during 

transmission. On the decoder side, the original message 

(u) was reconstructed thanks to the redundant bits added 

by the encoder. 
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Figure 1. Typical usage of error-correcting codes. 
 

Error-correcting codes can be classified into block 

codes and convolutional codes. Block codes operate on a 

fixed number of bits at a time (called a message) and do 

not require memory from previous decoding operations. 

Convolutional codes, on the other hand, operate on 

sequences of data, and each encoded block depends not 

only on the corresponding k-bit message but also on m 

previous message blocks [1]. 

Several approaches have been investigated to address 

the problem of decoder computational complexity. The 

use of information sets is one attempt to reduce the 

computations required to decode a codeword, by 

considering only a fraction of the total message bits. This 

approach was introduced by Prange [3], and followed by 

several researchers [4][5][6]. Due to its relatively simple 

software implementation, of particular interest is the 

Dorsch algorithm [7], as well as a variant based on 

ordered statistics decoding introduced by Fossorier [5]. 

In this paper, we present an efficient VLSI 

implementation for this kind of decoder. The proposed 

circuit is a modified, hardware-friendlier version of the 

Dorsch algorithm, and was originally introduced in [8]. 

2. INFORMATION-SET DECODING 

Consider a C(n, k, dmin) linear block code with 

codewords ci (i = 0 to 2
k
-1), minimum Hamming distance 

dmin, and generator matrix G (of size k×n). The encoding 

procedure consists in multiplying a message vector ui 

(with k bits) by G to produce a corresponding codeword 

ciC (with n bits). The decoder receives c*, a possibly 

corrupted version of ci, from which it extracts a hard 

decoded sequence ri, along with a reliability measure 

(based on the actual analog value) of each symbol. The 

latter is needed in order to rank the symbols in ri 

according to their reliabilities, originating the sorting 

sequence si and thus allowing the use of soft decision. 

G consists of k linearly independent columns (usually, 

the identity matrix Ik) plus n – k columns (linearly 

dependent on the previous ones) responsible for adding 

the redundancy. In blocked form, G can be represented as 

G = [I | P], where I is a k×k identity matrix and P is a 

k×(n – k) parity matrix.  

An information set (IS) is defined as any set of k 

linearly independent (LI) columns in G [3]. Because of 

the redundancy added by the encoder, it is not necessary 

to consider all n bits in order to decode a received word. 

The core principle of soft information set decoding is to 

use only the k most reliable symbols in c*, which are 

used to reconstruct the original source message u0. 

3. HARDWARE-ORIENTED DECODING 

ALGORITHM 

The modified information set decoder with soft 

decision, based on [5] and [7] but with much simpler 

computations, is presented in this section. The algorithm 



is summarized in Fig. 2 and is briefly described below 

using a (7, 4) code whose G matrix is that in Fig. 2(a). 

 

Fig. 2. Modified Gauss-Jordan elimination. 

A) Extract from the received codeword the hard decoded 
sequence ri and the corresponding reliability sequence 
si. The values of si are marked at the top of Fig. 2(a), 
where „1‟ indicates the most reliable column.  

B) Using Gauss-Jordan transformations, reduce the k 
most reliable columns (MRCs) of G to unit vectors. 
This step is repeated until k LI columns are found, and 
is illustrated in Figs. 2(b)-(f). Column 6 (the MRC) 
was reduced in Fig. 2(b), column 5 (the next MRC), in 
Fig. 2(c), then column 7, in Fig. 2(d). In Fig. 2(e), the 
algorithm failed to reduce column 3, indicating that the 
set is not LI. Column 3 was then replaced with column 
2 (the next MRC), which was successfully reduced in 
Fig. 2(f), resulting in a fully reduced matrix Gr.  

C) Create the matrix Gr0, which is simply Gr with all 
unselected columns zeroed. This is shown in Fig. 2(g). 

D) Multiply r by Gr0 to attain the source message (that is, 
u0 = r×Gr0, as indicated in Fig. 2(h)).  

E) Construct the k remaining candidate messages by 
simply flipping one bit of u0 at a time (a very simple 
procedure in hardware). The total number of candidate 

messages is k + 1, represented by ui (i = 0 to k).  

F) Finally, re-encode each candidate message using ci = 
ui×Gr. Measure the Euclidean distance between each 
codeword ci and r, in order to decide the winner. 

This algorithm was introduced in [8] and provides a 
performance comparable to that of maximum-likelihood 
decoding (MLD), but with considerably less 
computations.  For the C(48, 24, 12) code used in that 
work, the coding gain difference is less than 0.1 dB 
relative to MLD. 

4. HARDWARE ARCHITECTURE 

The hardware architecture (Fig. 3) comprises five 

main blocks: (1) input sorting and demodulation, (2) 

modified Gaussian elimination (or reduction) of the G 

matrix, (3) candidate messages generation, (4) candidate 

codewords generation and (5) best candidate selection. 

Block (1) receives an analog word x, and produces the 

reliabilities vector s and the received word, demodulated 

in a hard-decision fashion (r).  

Block (2) performs a modified Gauss elimination on 

the generator matrix G. The elimination proceeds until k 

LI columns are found, in the order dictated by the 

reliabilities vector s. Block (2) outputs are the reduced 

matrix Gr and the transformation matrix Gr0, which will 

extract only those bits in the positions of the selected 

information set when multiplied by the received word r. 

Block (3) produces a set of candidate messages for 

evaluation. First, the received word r is multiplied by 

Gr0
T
, in order to produce the base candidate u0. Then, 

other k candidates are generated by flipping one bit of u0 

at a time, originating the list of candidate messages UC.  

Next, block (4) computes a list of k+1 candidate 

codewords (CC), re-encoding the candidate messages by 

multiplying matrices UC and Gr. 

Finally, block (5) evaluates all k+1 re-encoded words 

in order to select the best possible candidate. A soft-

distance between each candidate ccj and the received 

analog word x is calculated as the sum of all individual 

bit distances. Finally, the codeword with the smallest 

distance is selected as the output of the decoder. 

The modified Gaussian elimination is central to the 

decoding algorithm, and as such block 2 is presented with 

more detail in Fig. 4. Matrix Gr0 is a simple byproduct of 

Gr, and was omitted from the diagram. 

Fig.  3. Hardware block diagram. 
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Fig.4. Block 2 implementation diagram. 

The elimination process is iterative and controlled by 

two counters. The iteration counter increases at every 

cycle, and is used as an index into the reliabilities vector s 

(starting with the most reliable element). The elimination 

counter increases only when a successful elimination 

occurs (i.e., the current column is LI); when its value 

reaches k, the elimination is completed. 

Scratch values are maintained in a working matrix 

(WM), which is registered at each iteration. WM is 

initially loaded with the generator matrix G, on the first 

processing cycle. The two blocks that follow are purely 

combinational, and perform the elementary operations 

applicable to binary matrices [8]: interchanging two rows 

in order to get a pivot element at a given position, and 

adding two rows to reduce each column to a unit vector. 

Following this combinational operations, the matrix is fed 

back, and registered for the next iteration. 

5. VLSI IMPLEMENTATION 

A VLSI implementation for the circuit shown in Fig. 

3 and corresponding to the algorithm from Section 3 is 

described next. This part of the work has the following 

objectives: 

(1)  To implement a complete information-set decoder 

with soft-decision capability; to our knowledge, this is 

the first VLSI implementation for this kind of decoder. 

(2)  To create a custom library of cells and hardware 

blocks tailored for the implementation of decoders; this 

will allow the investigation of tradeoffs and fine tuning of 

several implementation parameters. 

(3)  To evaluate the resulting circuit performance, 

including a comparison with the same circuit synthesized 

to different FPGA families. The FPGA version was 

implemented in VHDL, and is described in [8]. 

Our VLSI implementation uses a 0.5µm CMOS 

SCM3M_SUBM technology with 5V supply. At this 

moment, we have concluded the creation of the standard 

cells library, as well as the implementation of block 2, 

responsible for the modified Gauss-Jordan elimination. 

Starting with the VHDL description, the first step was 

translating the RTL code into logic gates. Although a 

logic synthesis tool (such as Cadence Encounter – RTL 

Compiler) would be recommended for this task, one of 

our goals was to develop a better understanding of the 

steps involved in the entire process. Thus, for each circuit 

block, the following tasks were performed: 

(1) The VHDL description was translated into 

hardware diagrams, one diagram for each VHDL process. 

(2) Each diagram was implemented in terms of 

simple gates and registers. These diagrams are used to 

create circuit schematics based on transistors, some of 

which are shown in Figs. 5(a) and 5(c). As can be seen, 

all circuits with the exception of the flip-flops use CMOS 

logic. This is a critical design step, since it involves the 

definition of each component configuration. For example, 

one of the most crucial decisions concerned the flip-flop 

to be employed in the circuits. Due to its single-clock-

phase, small size, and glitch free operation, the GF-TSPC 

(glitch free true single-phase clock) flip-flop [9] was 

chosen (Fig. 5(c)). 

(3) The corresponding spice code was written and 

simulated for each circuit from step (2), in order to 

confirm their correct behavior and timing response. 
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Figure 5. Standard cells: (a) Logic gates schematic;  

(b) Logic gates layout; (c) GF-TSPC schematic; 

 (d) GF-TSPC layout. 

(4) A gates and registers layout library was created, 

containing the project‟s standard cells (logic gates, flip-

flops, multiplexers, adders, counters, comparators, etc.). 

Some examples can be seen in Figs. 5(b) and 5(d). 

(5) The low-level circuits were placed and routed 

according to the diagrams obtained in steps (1) and (2). 

The resulting circuit (Fig. 6) was verified one more time, 

by performing a layout versus schematic comparison. 

6. RESULTS 

The complete layout of the Gaussian elimination circuit is 

shown in Fig. 6, with the main parts of the algorithm 

outlined. As can be seen, a large area is used by the 

combinational logic that performs the modified Gaussian 

elimination (regions (b) and (c)). Additionally, each 

output matrix (Gr and Gr0) occupies a significant area, 

due to the flip-flops required to store each element value. 
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Figure 6. Layout of modified Gauss-Jordan block.  

Spice simulations were performed to verify the correct 

circuit behavior. Fig. 7 shows the results for a Gaussian 

elimination using the same input values as those in Fig. 2. 

The four lower waveforms show two columns of WM; 

column 5 is represented with a dashed line, while column 

6 appears as a solid line. Their original values are 1011 

(col. 5) and 1110 (col. 6), which is in accordance with 

Fig. 2(a). After column 6 is eliminated, the new values 

are 1101 (col. 5) and 1000 (col. 6), corresponding to Fig 

2(b). Next, after eliminating column 5, the new values are 

0100 (col. 5) and 1000 (col. 6). The fact that each column 

became a unit vector indicates that the elimination 

worked as expected. Also, it can be seen that each 

column remains stable for the rest of the simulation, 

which is also consistent with the expected behavior. 

 

Figure 7. Simulation results for the modified Gaussian 

elimination (first two columns). 

Despite having completed only block 2 so far, its 

construction demanded the definition, testing, and layout 

of several standard cells, which will be used also in the 

other blocks, so the work is at a much more advanced 

stage than it might appear at first. The silicon area used 

by this block is approximately 0.98 mm
2
. Considering 

that in the FPGA implementation this block corresponds 

to 48% of the decoder area, we can estimate that the 

complete implementation will require about 2.04 mm
2
. 

In order to determine the maximum operating 

frequency of the circuit, a series of simulations were 

performed varying the clock period until a practical limit 

was found, and below which the decoder functioning was 

not reliable. It was determined that the circuit can operate 

correctly up to a frequency of 147 MHz. Comparing these 

results with those obtained in [8] for an FPGA of the 

Stratix III family (159.1 MHz), we can see that the 

implemented circuit, despite employing a low-end 

technology (0.5 µm), presents a performance comparable 

to that of a high-end FPGA (within 8%). 

7. CONCLUSION 

We have presented a VLSI implementation for the 

Gauss-Jordan elimination circuit, which is the main 

component of the target information-set-based decoder. 

First, a library of standard cells (for the entire project) 

was developed, followed by the layout and test of the 

entire block. The total block area (in 0.5 m CMOS) is 

0.98 mm
2
, with a maximum operating frequency of 147 

MHz, comparable to that reported for a high-end FPGA. 
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