
AN EFFICIENT VLSI IMPLEMENTATION FOR THE SOFT

INFORMATION-SET DECODING ALGORITHM

Sibilla B. L. França, Ricardo P. Jasinski, Volnei A. Pedroni

UTFPR, Dept. of Electronics Engineering

Curitiba–PR, Brazil

ABSTRACT

Error-correcting codes are present in basically all

modern data communications and data storage systems.

When top-performance is required, the corresponding

algorithms (encoder + decoder) are implemented in

hardware. This paper describes a VLSI implementation

for an information-set-based error correcting decoder.

More specifically, we present the modified Gauss-Jordan

elimination block, which constitutes the main block of

the ongoing work on the complete soft information-set

decoder. The motivation for this work is that such

decoder can achieve near-MLD performance with fewer

computations, but no VLSI implementation has been

developed for it yet.

1. INTRODUCTION

Error-correcting codes are a common method to

increase reliability in data transmission and storage

operations. By properly encoding the information, errors

induced by a noisy channel or medium can be reduced to

any desired level [1]. This is made possible by the

addition of extra bits, called redundancy bits or parity

bits, so the number of bits at the encoder outputs (n) is

always higher than at its inputs (k) [2].

Figure 1 illustrates the use of an error-correcting code

in data transmission [2]. Initially, the original message

(u) is encoded, resulting in a codeword (c) with more

bits. After the data is transmitted through a noisy channel,

the received message (c*) may be corrupted, but it can be

reconstituted if the errors introduced are within the code‟s

correction capability. In Figure 1, an original message

with k = 6 bits was encoded into a codeword with n = 9

bits, of which the 3
rd

 bit was corrupted during

transmission. On the decoder side, the original message

(u) was reconstructed thanks to the redundant bits added

by the encoder.

Encoder Decoder

Noisy channel
c c*u u* (=u)

101100 011101100 010101100 101100

Figure 1. Typical usage of error-correcting codes.

Error-correcting codes can be classified into block

codes and convolutional codes. Block codes operate on a

fixed number of bits at a time (called a message) and do

not require memory from previous decoding operations.

Convolutional codes, on the other hand, operate on

sequences of data, and each encoded block depends not

only on the corresponding k-bit message but also on m

previous message blocks [1].

Several approaches have been investigated to address

the problem of decoder computational complexity. The

use of information sets is one attempt to reduce the

computations required to decode a codeword, by

considering only a fraction of the total message bits. This

approach was introduced by Prange [3], and followed by

several researchers [4][5][6]. Due to its relatively simple

software implementation, of particular interest is the

Dorsch algorithm [7], as well as a variant based on

ordered statistics decoding introduced by Fossorier [5].

In this paper, we present an efficient VLSI

implementation for this kind of decoder. The proposed

circuit is a modified, hardware-friendlier version of the

Dorsch algorithm, and was originally introduced in [8].

2. INFORMATION-SET DECODING

Consider a C(n, k, dmin) linear block code with

codewords ci (i = 0 to 2
k
-1), minimum Hamming distance

dmin, and generator matrix G (of size k×n). The encoding

procedure consists in multiplying a message vector ui

(with k bits) by G to produce a corresponding codeword

ciC (with n bits). The decoder receives c*, a possibly

corrupted version of ci, from which it extracts a hard

decoded sequence ri, along with a reliability measure

(based on the actual analog value) of each symbol. The

latter is needed in order to rank the symbols in ri

according to their reliabilities, originating the sorting

sequence si and thus allowing the use of soft decision.

G consists of k linearly independent columns (usually,

the identity matrix Ik) plus n – k columns (linearly

dependent on the previous ones) responsible for adding

the redundancy. In blocked form, G can be represented as

G = [I | P], where I is a k×k identity matrix and P is a

k×(n – k) parity matrix.

An information set (IS) is defined as any set of k

linearly independent (LI) columns in G [3]. Because of

the redundancy added by the encoder, it is not necessary

to consider all n bits in order to decode a received word.

The core principle of soft information set decoding is to

use only the k most reliable symbols in c*, which are

used to reconstruct the original source message u0.

3. HARDWARE-ORIENTED DECODING

ALGORITHM

The modified information set decoder with soft

decision, based on [5] and [7] but with much simpler

computations, is presented in this section. The algorithm

is summarized in Fig. 2 and is briefly described below

using a (7, 4) code whose G matrix is that in Fig. 2(a).

Fig. 2. Modified Gauss-Jordan elimination.

A) Extract from the received codeword the hard decoded
sequence ri and the corresponding reliability sequence
si. The values of si are marked at the top of Fig. 2(a),
where „1‟ indicates the most reliable column.

B) Using Gauss-Jordan transformations, reduce the k
most reliable columns (MRCs) of G to unit vectors.
This step is repeated until k LI columns are found, and
is illustrated in Figs. 2(b)-(f). Column 6 (the MRC)
was reduced in Fig. 2(b), column 5 (the next MRC), in
Fig. 2(c), then column 7, in Fig. 2(d). In Fig. 2(e), the
algorithm failed to reduce column 3, indicating that the
set is not LI. Column 3 was then replaced with column
2 (the next MRC), which was successfully reduced in
Fig. 2(f), resulting in a fully reduced matrix Gr.

C) Create the matrix Gr0, which is simply Gr with all
unselected columns zeroed. This is shown in Fig. 2(g).

D) Multiply r by Gr0 to attain the source message (that is,
u0 = r×Gr0, as indicated in Fig. 2(h)).

E) Construct the k remaining candidate messages by
simply flipping one bit of u0 at a time (a very simple
procedure in hardware). The total number of candidate

messages is k + 1, represented by ui (i = 0 to k).

F) Finally, re-encode each candidate message using ci =
ui×Gr. Measure the Euclidean distance between each
codeword ci and r, in order to decide the winner.

This algorithm was introduced in [8] and provides a
performance comparable to that of maximum-likelihood
decoding (MLD), but with considerably less
computations. For the C(48, 24, 12) code used in that
work, the coding gain difference is less than 0.1 dB
relative to MLD.

4. HARDWARE ARCHITECTURE

The hardware architecture (Fig. 3) comprises five

main blocks: (1) input sorting and demodulation, (2)

modified Gaussian elimination (or reduction) of the G

matrix, (3) candidate messages generation, (4) candidate

codewords generation and (5) best candidate selection.

Block (1) receives an analog word x, and produces the

reliabilities vector s and the received word, demodulated

in a hard-decision fashion (r).

Block (2) performs a modified Gauss elimination on

the generator matrix G. The elimination proceeds until k

LI columns are found, in the order dictated by the

reliabilities vector s. Block (2) outputs are the reduced

matrix Gr and the transformation matrix Gr0, which will

extract only those bits in the positions of the selected

information set when multiplied by the received word r.

Block (3) produces a set of candidate messages for

evaluation. First, the received word r is multiplied by

Gr0
T
, in order to produce the base candidate u0. Then,

other k candidates are generated by flipping one bit of u0

at a time, originating the list of candidate messages UC.

Next, block (4) computes a list of k+1 candidate

codewords (CC), re-encoding the candidate messages by

multiplying matrices UC and Gr.

Finally, block (5) evaluates all k+1 re-encoded words

in order to select the best possible candidate. A soft-

distance between each candidate ccj and the received

analog word x is calculated as the sum of all individual

bit distances. Finally, the codeword with the smallest

distance is selected as the output of the decoder.

The modified Gaussian elimination is central to the

decoding algorithm, and as such block 2 is presented with

more detail in Fig. 4. Matrix Gr0 is a simple byproduct of

Gr, and was omitted from the diagram.

Fig. 3. Hardware block diagram.

1 0

WM

swap rows

eliminate

=k

G

Groutput_ready

reset

iteration counter

elimination counter

row & col. selects

=1

Fig.4. Block 2 implementation diagram.

The elimination process is iterative and controlled by

two counters. The iteration counter increases at every

cycle, and is used as an index into the reliabilities vector s

(starting with the most reliable element). The elimination

counter increases only when a successful elimination

occurs (i.e., the current column is LI); when its value

reaches k, the elimination is completed.

Scratch values are maintained in a working matrix

(WM), which is registered at each iteration. WM is

initially loaded with the generator matrix G, on the first

processing cycle. The two blocks that follow are purely

combinational, and perform the elementary operations

applicable to binary matrices [8]: interchanging two rows

in order to get a pivot element at a given position, and

adding two rows to reduce each column to a unit vector.

Following this combinational operations, the matrix is fed

back, and registered for the next iteration.

5. VLSI IMPLEMENTATION

A VLSI implementation for the circuit shown in Fig.

3 and corresponding to the algorithm from Section 3 is

described next. This part of the work has the following

objectives:

(1) To implement a complete information-set decoder

with soft-decision capability; to our knowledge, this is

the first VLSI implementation for this kind of decoder.

(2) To create a custom library of cells and hardware

blocks tailored for the implementation of decoders; this

will allow the investigation of tradeoffs and fine tuning of

several implementation parameters.

(3) To evaluate the resulting circuit performance,

including a comparison with the same circuit synthesized

to different FPGA families. The FPGA version was

implemented in VHDL, and is described in [8].

Our VLSI implementation uses a 0.5µm CMOS

SCM3M_SUBM technology with 5V supply. At this

moment, we have concluded the creation of the standard

cells library, as well as the implementation of block 2,

responsible for the modified Gauss-Jordan elimination.

Starting with the VHDL description, the first step was

translating the RTL code into logic gates. Although a

logic synthesis tool (such as Cadence Encounter – RTL

Compiler) would be recommended for this task, one of

our goals was to develop a better understanding of the

steps involved in the entire process. Thus, for each circuit

block, the following tasks were performed:

(1) The VHDL description was translated into

hardware diagrams, one diagram for each VHDL process.

(2) Each diagram was implemented in terms of

simple gates and registers. These diagrams are used to

create circuit schematics based on transistors, some of

which are shown in Figs. 5(a) and 5(c). As can be seen,

all circuits with the exception of the flip-flops use CMOS

logic. This is a critical design step, since it involves the

definition of each component configuration. For example,

one of the most crucial decisions concerned the flip-flop

to be employed in the circuits. Due to its single-clock-

phase, small size, and glitch free operation, the GF-TSPC

(glitch free true single-phase clock) flip-flop [9] was

chosen (Fig. 5(c)).

(3) The corresponding spice code was written and

simulated for each circuit from step (2), in order to

confirm their correct behavior and timing response.

(a)

 (b)

 NOT NAND NOR XOR

(c)

(d)

GF-TSPC DFF

Figure 5. Standard cells: (a) Logic gates schematic;

(b) Logic gates layout; (c) GF-TSPC schematic;

 (d) GF-TSPC layout.

(4) A gates and registers layout library was created,

containing the project‟s standard cells (logic gates, flip-

flops, multiplexers, adders, counters, comparators, etc.).

Some examples can be seen in Figs. 5(b) and 5(d).

(5) The low-level circuits were placed and routed

according to the diagrams obtained in steps (1) and (2).

The resulting circuit (Fig. 6) was verified one more time,

by performing a layout versus schematic comparison.

6. RESULTS

The complete layout of the Gaussian elimination circuit is

shown in Fig. 6, with the main parts of the algorithm

outlined. As can be seen, a large area is used by the

combinational logic that performs the modified Gaussian

elimination (regions (b) and (c)). Additionally, each

output matrix (Gr and Gr0) occupies a significant area,

due to the flip-flops required to store each element value.

G Gr

s Gr0

(a) working matrix (WM)

(b) swap rows

(c) eliminate

(d) Gr0

Figure 6. Layout of modified Gauss-Jordan block.

Spice simulations were performed to verify the correct

circuit behavior. Fig. 7 shows the results for a Gaussian

elimination using the same input values as those in Fig. 2.

The four lower waveforms show two columns of WM;

column 5 is represented with a dashed line, while column

6 appears as a solid line. Their original values are 1011

(col. 5) and 1110 (col. 6), which is in accordance with

Fig. 2(a). After column 6 is eliminated, the new values

are 1101 (col. 5) and 1000 (col. 6), corresponding to Fig

2(b). Next, after eliminating column 5, the new values are

0100 (col. 5) and 1000 (col. 6). The fact that each column

became a unit vector indicates that the elimination

worked as expected. Also, it can be seen that each

column remains stable for the rest of the simulation,

which is also consistent with the expected behavior.

Figure 7. Simulation results for the modified Gaussian

elimination (first two columns).

Despite having completed only block 2 so far, its

construction demanded the definition, testing, and layout

of several standard cells, which will be used also in the

other blocks, so the work is at a much more advanced

stage than it might appear at first. The silicon area used

by this block is approximately 0.98 mm
2
. Considering

that in the FPGA implementation this block corresponds

to 48% of the decoder area, we can estimate that the

complete implementation will require about 2.04 mm
2
.

In order to determine the maximum operating

frequency of the circuit, a series of simulations were

performed varying the clock period until a practical limit

was found, and below which the decoder functioning was

not reliable. It was determined that the circuit can operate

correctly up to a frequency of 147 MHz. Comparing these

results with those obtained in [8] for an FPGA of the

Stratix III family (159.1 MHz), we can see that the

implemented circuit, despite employing a low-end

technology (0.5 µm), presents a performance comparable

to that of a high-end FPGA (within 8%).

7. CONCLUSION

We have presented a VLSI implementation for the

Gauss-Jordan elimination circuit, which is the main

component of the target information-set-based decoder.

First, a library of standard cells (for the entire project)

was developed, followed by the layout and test of the

entire block. The total block area (in 0.5 m CMOS) is

0.98 mm
2
, with a maximum operating frequency of 147

MHz, comparable to that reported for a high-end FPGA.

8. REFERENCES

[1] S. Lin, J. J. Costello, Error Control Coding: Fundamentals

and Applications, Prentice-Hall, USA, 1983.

[2] V.A. Pedroni, Digital Electronics and Design with VHDL,

Morgan Kaufmann, USA, 2008.

[3] E. Prange, “The use of information sets in decoding cyclic

codes,” IRE Trans. on Information Theory, Vol. IT-8, pp. 5-9,

Sep. 1962.

[4] J. Coffey, R. Goodman, “The complexity of information set

decoding,” IEEE Trans. on Information Theory, Vol. IT-36, No.

5, pp. 1031-1037, Set. 1990.

[5] M. Fossorier, S. Lin, “Soft-decision decoding of linear block

codes based on order statistics,” IEEE Trans. on Information

Theory, Vol. IT-41,No. 5, pp. 13791396, Sep. 1995.

[6] M. Fossorier, “Reliability-based soft-decision decoding with

iterative information set reduction,” IEEE Trans. on Information

Theory,Vol. IT-48, No. 12, pp. 3101-3106, Dec. 2002.

[7] B. G. Dorsch, “A decoding algorithm for binary block codes

and j-ary output channels,” IEEE Trans. on Information Theory,

Vol. IT-20, pp. 391-394, May 1974.

[8] A. Gortan ; W. Godoy Jr. ; R. P. Jasinski , V. A. Pedroni,

“Hardware-Friendly Implementation of Soft Information Set

Decoders,” IEEE Int. Telecomm. Symp. (ITS), Manaus, 2010.

[9] Q. Huang, “Speed optimization of edge-triggered nine-

transistor D-flip-flops for gigahertz single-phase clocks,” IEEE

Int. Symp. on Circuits and Systems, pp. 2118-2121, May 1993.

